当前位置: 首页 > news >正文

算法时间、空间复杂度(二)

目录

大O渐进表示法 

一、时间复杂度量级的判断

定义:

例一:执行2*N+1次

例二:执行M+N次

例三:执行已知次数

例四:存在最好情况和最坏情况

顺序查找

冒泡排序

二分查找

例五:阶乘递归

​编辑

例六:斐波那契递归

​编辑

总结:


算法时间、空间复杂度(一)-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/Xiaodao12345djs/article/details/142931619?spm=1001.2014.3001.5501

大O渐进表示法 

我们通常用大O渐进表示法来表示时间复杂度和空间复杂度的量级

例如:如果一个程序执行了2N+1次,那么这个程序的时间复杂度属于O(N)这个量级

一、时间复杂度量级的判断

定义:

算法中的基本操作的次数,与环境无关

例一:执行2*N+1次

时间复杂度的量级为O(N)

  • 保留执行次数的最高阶
  • 去掉最高阶的常系数
for(int k=0; k<2*N; k++)
{++count;
}while(w--)
{++count;
}

例二:执行M+N次

时间复杂度为O(N)或者O(M)

  • 如果M>>N,时间复杂度量级为O(M)
  • 如果N>>M,时间复杂度量级为O(N)
  • 如果相差不多,相当于执行2*N次或者2*M次,所以时间复杂度量级为O(N)或者O(M)
for(k = 0; k < M; k++)
{count++;
}
for(k = 0; k < N ; k++)
{count++;
}

例三:执行已知次数

时间复杂度位O(1)

for(int k = 0; k < 10; k++)
{count++;
}

例四:存在最好情况和最坏情况

如果出现最好情况执行次数和最坏情况执行次数,看最坏情况(下限)

  • 顺序查找

const char* strchr(const char* str, int characeter)
while(*str)
{if(*str == character){return str;}++str;
}

最好情况:执行1次就能找到

最坏情况:执行N次才能找到

时间复杂度为O(N)

  • 冒泡排序

最好情况:N-1次

最坏情况:N(N-1)/2(等差数列)

时间复杂度为O(N^2)

  • 二分查找

最好情况:1次

最坏情况:logN(以2为底N的对数,在C语言中会简化为logN,有的书上会简化成lgN(不推荐))

时间复杂度为O(logN)

​​​​​​​例五:阶乘递归

long long Fac(size_t N)
{if(0 == N)return 1;return Fac(N-1)*N
}

时间复杂度为O(N)

例六:斐波那契递归

long long Fib(size_t N)
{if(N<3)return 1;return Fib(N-1)+Fib(N-2);
}

时间复杂度为O(2^N)

总结:

  • O(1)           常数阶
  • O(logN)       对数阶
  • O(N)           线性
  • O(N*logN)    nlog阶
  • O(N^2)        平方阶
  • O(N^3)        立方阶
  • O(2^N)        指数阶

相关文章:

算法时间、空间复杂度(二)

目录 大O渐进表示法 一、时间复杂度量级的判断 定义&#xff1a; 例一&#xff1a;执行2*N&#xff0b;1次 例二&#xff1a;执行MN次 例三&#xff1a;执行已知次数 例四:存在最好情况和最坏情况 顺序查找 冒泡排序 二分查找 例五&#xff1a;阶乘递归 ​编辑 例…...

高级java每日一道面试题-2024年10月11日-数据库篇[Redis篇]-Redis都有哪些使用场景?

如果有遗漏,评论区告诉我进行补充 面试官: Redis都有哪些使用场景? 我回答: Redis 是一个开源的、基于键值对的数据结构存储系统&#xff0c;&#xff0c;它支持多种数据类型&#xff0c;包括字符串、散列、列表、集合和有序集合。它可以用作数据库、缓存和消息中间件。由于…...

0047__【python打包分发工具】setuptools详解

【python打包分发工具】setuptools详解-CSDN博客...

自定义拦截器处理token

目录 1、WebConfig 配置类 2、TSUserContext 把用户信息放到context中 3、自定义拦截器 4、在controller中可以使用 5、参考链接 1、WebConfig 配置类 @Configuration public class WebConfig implements WebMvcConfigurer {@Autowiredprivate AccessControlInterceptor …...

Scrapy | 使用Scrapy进行数据建模和请求

scrapy数据建模与请求 数据建模1.1 为什么建模1.2 如何建模1.3如何使用模板类1.4 开发流程总结 目标&#xff1a; 1.应用在scrapy项目中进行建模 2.应用构造Request对象&#xff0c;并发送请求 3.应用利用meta参数在不同的解析函数中传递数据 数据建模 | 通常在做项目的过程中…...

学习笔记——交换——STP(生成树)基本概念

三、基本概念 1、桥ID/网桥ID (Bridege ID&#xff0c;BID) 每一台运行STP的交换机都拥有一个唯一的桥ID(BID)&#xff0c;BID(Bridge ID/桥ID)。在STP里我们使用不同的桥ID标识不同的交换机。 (2)BID(桥ID)组成 BID(桥ID)组成(8个字节)&#xff1a;由16位(2字节)的桥优先级…...

机器学习笔记-2

文章目录 一、Linear model二、How to represent this function三、Function with unknown parameter四、ReLU总结、A fancy name 一、Linear model 线性模型过于简单&#xff0c;有很大限制&#xff0c;我们需要更多复杂模式 蓝色是线性模型&#xff0c;线性模型无法去表示…...

SpringSecurity(一)——认证实现

一、初步理解 SpringSecurity的原理其实就是一个过滤器链&#xff0c;内部包含了提供各种功能的过滤器。 当前系统中SpringSecurity过滤器链中有哪些过滤器及它们的顺序。 核心过滤器&#xff1a; &#xff08;认证&#xff09;UsernamePasswordAuthenticationFilter:负责处理…...

VMWare NAT 模式下 虚拟机上不了网原因排查

vmware 按照了Linux之后 无法上网&#xff0c;搞定后&#xff0c;记录一些信息。 window有两个虚拟网卡 VMnet1 对应的是 Host-Only&#xff08;仅主机模式&#xff09; VMnet8 对应的是 NAT&#xff08;网络地址转换模式&#xff09; 在NAT模式中&#xff0c;需要设置NAT和D…...

R语言手工实现主成分分析 PCA | 奇异值分解(svd) 与PCA | PCA的疑问和解答

几个问题: pca可以用相关系数矩阵做吗?效果比协方差矩阵比怎么样?pca做完后变量和样本的新坐标怎么旋转获得?pca做不做scale和center对结果有影响吗?pca用因子分解和奇异值分解有啥区别?后者怎么获得变量和样本的新坐标?1. 用R全手工实现 PCA(对比 prcomp() ) 不借助包…...

第三届OpenHarmony技术大会在上海成功举办

10月12日&#xff0c;以“技术引领筑生态&#xff0c;万物智联创未来”为主题的第三届OpenHarmony技术大会&#xff08;以下简称“大会”&#xff09;在上海成功举办。本次大会由OpenAtom OpenHarmony&#xff08;以下简称“OpenHarmony”&#xff09;项目群技术指导委员会&…...

数字化:IT部门主导还是业务部门主导?

在这个瞬息万变的数字化时代&#xff0c;企业如同在大海中航行的小船&#xff0c;面对波涛汹涌的市场竞争&#xff0c;数字化转型已成为生存的必经之路。然而&#xff0c;在这条充满挑战的航线上&#xff0c;常常会出现一个让人纠结的问题&#xff1a;数字化转型究竟应该由IT部…...

MySQL表的基本查询下/分组聚合统计

1&#xff0c;update 对查询到的结果进行列值更新&#xff0c;可以和older by&#xff0c;where&#xff0c;limit合并使用&#xff0c;为了方便讲解&#xff0c;将会以题目练习的方式进行说明&#xff1a; 1&#xff0c;将孙悟空同学的数学成绩变更为 80 分 本道题和where联…...

条款3: 理解decltype

目录 一、decltype + 变量 二、decltype + 表达式 三、decltype 使用场景 一、decltype + 变量 🥭 所有的信息都会保留,数组和函数也不会退化 const int &&carref = std::move(ca); decltype(carref) bb; // bb推导为const int &&,不会被忽略掉co…...

TCP:过多的TIME_WAIT

过多的TIME_WAIT 线上问题紧急处理方式tcp_tw_reuse启用主要特点&#xff1a;源码 线上问题 线上机器出现了几万个TIME_WAIT&#xff0c;怎么办&#xff1f; 紧急处理方式 tcp_tw_reuse 启用 默认情况下tcp_tw_reuse是关闭状态&#xff0c;使用sysctl -w net.ipv4.tcp_tw_…...

化学元素分子量、氧化物系数计算python类

在网上找到的分子量计算类&#xff0c;做了少量修改,有原子量、分子量、氧化物系数的计算。 import re wt_dict{ #该原子量数据从CRC手册第95版提取。"H": 1.008,"He": 4.002602,"Li": 6.94,"Be": 9.0121831,"B": 10.…...

torch.utils.data.DataLoader参数介绍

torch.utils.data.DataLoader 是 PyTorch 用于加载数据的重要工具,特别是在深度学习模型训练中。它可以高效地处理大规模数据集,并支持多线程数据加载。以下是 DataLoader 的关键参数及其功能: 主要参数 dataset: 要加载的数据集,可以是 PyTorch 自带的 torch.utils.data.…...

echarts 入门

工作中第一次碰到echarts&#xff0c;当时有大哥。二进宫没办法&#xff0c;只能搞定它。 感觉生活就是这样&#xff0c;不能解决的问题总是会反复出现。通过看视频、查资料&#xff0c;完成了工作要求。写一篇Hello World&#xff0c;进行备查。 基本使用 快速上手 <!DO…...

WPF实现类似网易云音乐的菜单切换

这里是借助三方UI框架实现了&#xff0c;感兴趣的小伙伴可以看一下。 深色模式&#xff1a;​ 浅色模式&#xff1a; ​这里主要使用了以下三个包&#xff1a; MahApps.Metro&#xff1a;UI库&#xff0c;提供菜单导航和其它控件​​​​​​​ 实现步骤&#xff1a;1、使用B…...

OpenCV人脸检测与识别:构建智能识别系统

在当今科技日新月异的时代&#xff0c;人脸识别技术以其独特的便利性和安全性&#xff0c;在各个领域都展现出了巨大的应用潜力。从智能手机的面部解锁&#xff0c;到机场的自动安检&#xff0c;再到商场的顾客行为分析&#xff0c;人脸识别技术无处不在。本文将深入探讨如何使…...

2024年赣州旅游投资集团社会招聘笔试真

2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一&#xff0c;能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时&#xff0c;需要添加Git仓库地址和凭证&#xff0c;设置构建触发器&#xff08;如GitHub…...

水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关

在水泥厂的生产流程中&#xff0c;工业自动化网关起着至关重要的作用&#xff0c;尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关&#xff0c;为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多&#xff0c;其中不少设备采用Devicenet协议。Devicen…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...