【Java数据结构】优先级队列(堆)
一. 优先级队列
1 概念
2. 优先级队列的模拟实现
二、堆的概念
1.堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
2 堆的存储方式
注意:对于 非完全二叉树,则不适合使用顺序方式进行存储 ,因为为了能够还原二叉树, 空间中必须要存储空节 点,就会导致空间利用率比较低 。
- 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2
- 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子
- 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子
3 堆的创建
1 堆向下调整

- parent右孩子是否存在,存在找到左右孩子中最小的孩子,让child进行标记
- 将parent与较小的孩子child比较,如果:
- 否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子
- parent小于较小的孩子child,调整结束树不满足此性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

public void shiftDown(int parent,int usedSize){int child=parent*2+1;while(child<usedSize){// 如果右孩子存在,找到左右孩子中较大的孩子,用child进行标记if(child+1<usedSize&&elem[child]<elem[child+1]){child++;}if(elem[parent]<elem[child]){int tmp=elem[parent];elem[parent]=elem[child];elem[child]=tmp;}else {break;//如果孩子都比父母小}parent=child;child=2*parent+1;}} 注意:在调整以parent为根的二叉树时,必须要满足parent的左子树和右子树已经是堆了才可以向下调整。
2 堆的创建

public void createHeap(){// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整for(int parent=(usedSize-1-1)/2;parent>=0;parent--){shiftDown(parent,usedSize);}}
3 建堆的时间复杂度

4 堆的插入与删除
(1) 堆的插入
public boolean isFull(){if(elem.length>usedSize){return false;}else {return true;}
}
public void push(int val){//将结点插在最后,再向上调整建堆if(isFull()){elem= Arrays.copyOf(elem,2*elem.length);}elem[usedSize]=val;shiftUp(usedSize);usedSize++;
}
public void shiftUp(int child) {int parent=(child-1)/2;while(parent>=0){if(elem[parent]<elem[child]){int tmp=elem[parent];elem[parent]=elem[child];elem[child]=tmp;child=parent;parent=(child-1)/2;}else {break;}}
} 
向上调整的时间复杂度为O(NlogN)。
(2) 堆的删除

5 用堆模拟实现优先级队列
public boolean isEmpty(){return usedSize==0;}public int poll( ) {if(isEmpty()){return -1;}int val=elem[0];swap(elem,0,usedSize-1);shiftDown(0,usedSize-1);usedSize--;return val;}public void swap(int[] elem,int start,int end){int tmp=elem[start];elem[start]=elem[end];elem[end]=tmp;}
1. 下列关键字序列为堆的是 :()A: 100,60,70,50,32,65 B: 60,70,65,50,32,100 C: 65,100,70,32,50,60D: 70,65,100,32,50,60 E: 32,50,100,70,65,60 F: 50,100,70,65,60,322. 已知小根堆为 8,15,10,21,34,16,12 ,删除关键字 8 之后需重建堆,在此过程中,关键字之间的比较次数是 ()A: 1 B: 2 C: 3 D: 43. 最小堆 [0,3,2,5,7,4,6,8], 在删除堆顶元素 0 之后,其结果是 ()A: [3 , 2 , 5 , 7 , 4 , 6 , 8] B: [2 , 3 , 5 , 7 , 4 , 6 , 8]C: [2 , 3 , 4 , 5 , 7 , 8 , 6] D: [2 , 3 , 4 , 5 , 6 , 7 , 8][ 参考答案 ]1.A 2.C 3.C
三、常用接口介绍
1 PriorityQueue的特性

- 使用时必须导入PriorityQueue所在的包,即: importjava.util.PriorityQueue;
- PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出 ClassCastException异常
- 不能插入null对象,否则会抛出NullPointerException
- 没有容量限制,可以插入任意多个元素,其内部可以自动扩容
- 插入和删除元素的时间复杂度为O(logN)
- PriorityQueue底层使用了堆数据结构
- PriorityQueue默认情况下是小堆---即每次获取到的元素都是最小的元素
2 PriorityQueue常用接口介绍
1. 优先级队列的构造




static void TestPriorityQueue(){
// 创建一个空的优先级队列,底层默认容量是11PriorityQueue<Integer> q1 = new PriorityQueue<>();
// 创建一个空的优先级队列,底层的容量为initialCapacityPriorityQueue<Integer> q2 = new PriorityQueue<>(100);ArrayList<Integer> list = new ArrayList<>();list.add(4);list.add(3);list.add(2);list.add(1);
// 用ArrayList对象来构造一个优先级队列的对象
// q3中已经包含了三个元素PriorityQueue<Integer> q3 = new PriorityQueue<>(list);System.out.println(q3.size());System.out.println(q3.peek());}
public int compare(Integer o1, Integer o2) {return o2.compareTo(o1);}
}
public class Test {public static void main(String[] args) {PriorityQueue<Integer> priorityQueue=new PriorityQueue<>(new intCom());priorityQueue.offer(1);priorityQueue.offer(2);priorityQueue.offer(3);System.out.println(priorityQueue.peek());}
} 此时创建出来的就是一个大堆。
2. 插入/删除/获取优先级最高的元素
| 函数名 | 功能介绍 |
| boolean offer(E e) | 插入元素e,插入成功返回true,如果e对象为空,抛出NullPointerException异常,时间复杂度O(logN),注意:空间不够时候会进行扩容 |
| E peek() | 获取优先级最高的元素,如果优先级队列为空,返回null |
| E poll() | 移除优先级最高的元素并返回,如果优先级队列为空,返回null |
| int size() | 获取有效元素的个数 |
| void clear() | 清空 |
| boolean isEmpty() | 检测优先级队列是否为空,空返回true |
static void TestPriorityQueue2(){int[] arr = {4,1,9,2,8,0,7,3,6,5};
// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好
// 否则在插入时需要不多的扩容
// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);for (int e: arr) {q.offer(e);}System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素
// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素q.poll();q.poll();System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素q.offer(0);System.out.println(q.peek()); // 获取优先级最高的元素
// 将优先级队列中的有效元素删除掉,检测其是否为空q.clear();if(q.isEmpty()){System.out.println("优先级队列已经为空!!!"); private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;private void grow(int minCapacity) {int oldCapacity = queue.length;
// Double size if small; else grow by 50%int newCapacity = oldCapacity + ((oldCapacity < 64) ?(oldCapacity + 2) :(oldCapacity >> 1));
// overflow-conscious codeif (newCapacity - MAX_ARRAY_SIZE > 0)newCapacity = hugeCapacity(minCapacity);queue = Arrays.copyOf(queue, newCapacity);}private static int hugeCapacity(int minCapacity) {if (minCapacity < 0) // overflowthrow new OutOfMemoryError();return (minCapacity > MAX_ARRAY_SIZE) ?Integer.MAX_VALUE :MAX_ARRAY_SIZE;} 优先级队列的扩容说明:
- 如果容量小于64时,是按照oldCapacity的2倍方式扩容的
- 如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的
- 如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容
3 oj练习
方法1:把所有元素都放去堆排序,然后取前K个
class Solution {public int[] smallestK(int[] arr, int k) {PriorityQueue<Integer> priorityQueue=new PriorityQueue<>();//O(NlogN)for(int i:arr){priorityQueue.offer(i);}int[] elem=new int[k];//O(klogN)for(int i=0;i<k;i++){elem[i]=priorityQueue.poll();}return elem;}
} 时间复杂度:O(NlogN+klogN)=O((N+k)logN)
该解法只是PriorityQueue的简单使用,并不是topK最好的做法,那topk该如何实现?下面介绍:
方法2:把前K个元素创建为大根堆,遍历剩下N-K个元素,和堆顶元素相比较,如果比堆顶元素小,就把堆顶元素删除,插入当前元素
class intCom implements Comparator<Integer>{public int compare(Integer o1, Integer o2) {return o2.compareTo(o1);}}
class Solution {public int[] smallestK(int[] arr, int k) {int[] elem=new int[k];if(k==0||arr==null){return elem;}PriorityQueue<Integer> priorityQueue=new PriorityQueue<>(new intCom());//O(klogk)for(int i=0;i<k;i++){priorityQueue.offer(arr[i]);}//O((N-k)logk)for(int j=k;j<arr.length;j++){int peekval=priorityQueue.peek();if(arr[j]<peekval){priorityQueue.poll();priorityQueue.offer(arr[j]);}}for(int i=0;i<k;i++){elem[i]=priorityQueue.poll();}return elem;}
}
四. 堆的应用
1 PriorityQueue的实现
2 堆排序
public void shiftDown(int parent,int usedSize){int child=parent*2+1;while(child<usedSize){// 如果右孩子存在,找到左右孩子中较大的孩子,用child进行标记if(child+1<usedSize&&elem[child]<elem[child+1]){child++;}if(elem[parent]<elem[child]){int tmp=elem[parent];elem[parent]=elem[child];elem[child]=tmp;}else {break;//如果孩子都比父母小}parent=child;child=2*parent+1;}} 1. 建堆

常见习题:1. 一组记录排序码为 (5 11 7 2 3 17), 则利用堆排序方法建立的初始堆为 ()A: (11 5 7 2 3 17) B: (11 5 7 2 17 3) C: (17 11 7 2 3 5)D: (17 11 7 5 3 2) E: (17 7 11 3 5 2) F: (17 7 11 3 2 5)答案: C
3 Top-k问题
- 前k个最大的元素,则建小堆
- 前k个最小的元素,则建大堆
相关文章:
【Java数据结构】优先级队列(堆)
【本节目标】 1. 掌握堆的概念及实现 2. 掌握 PriorityQueue 的使用 一. 优先级队列 1 概念 前面学过队列,队列是一种先进先出 (FIFO) 的数据结构 ,但有些情况下, 操作的数据可能带有优先级,一般出队 列时,可…...
图书个性化推荐系统|基于springBoot的图书个性化推荐系统设计与实现(附项目源码+论文+数据库)
私信或留言即免费送开题报告和任务书(可指定任意题目) 目录 一、摘要 二、相关技术 三、系统设计 四、数据库设计 五、核心代码 六、论文参考 七、源码获取 一、摘要 本论文主要论述了如何使用JAVA语言开发一个图书个性化推荐系统&…...
通用车牌正则校验
要编写一个正则表达式来包含所有类型的车牌号,我们需要考虑以下几种常见的车牌类型: 1. 普通汽车车牌(蓝牌/黄牌) 规则:1个汉字 1个字母 5个字母或数字示例:京A12345、粤B5678X 2. 新能源车牌…...
使用 SSH 连接 GitLab 的常见问题及解决方案
使用 SSH 连接 GitLab 的常见问题及解决方案 在使用 SSH 连接到 GitLab 服务器时,可能会遇到类似于以下的错误信息: git192.168.xx.xxx: Permission denied (publickey).这个错误通常表示 SSH 无法验证你的公钥,导致无法访问 GitLab 仓库。…...
泛微E9开发 校验日期型字段是否符合要求
校验日期型字段是否符合要求 1、需求分析及展示效果1.1、需求确认1.2、展示效果 2、实现方法3、扩展知识——js日期相关函数 1、需求分析及展示效果 1.1、需求确认 “填报时间”是一个日期型字段,用户提出需求只能选择每个月的第二个周二,选择其他日期…...
ubuntu安装Vim和net-tools和htop
合并安装,快捷方便 sudo apt update sudo apt install net-tools vim htop在Ubuntu中安装Vim可以通过终端使用以下命令完成: sudo apt update sudo apt install vim这两条命令首先更新了本地的包索引,然后安装了Vim文本编辑器。 安装完成后…...
每天10个js面试题(六)
1、js数组方法? Array.push()此方法是在数组的后面添加新加元素,此方法改变了数组的长度Array.pop()此方法在数组后面删除最后一个元素,并返回数组,此方法改变了数组的长度 Array.shift()此方法在数组后面删除第一个元素…...
AIGC技术的学习 系列二
文章目录 前言一、AIGC是什么?1.1. 基本概念1.2机器学习分类二、 语言模型2.1. 基于统计的语言模型。2.2. 基于神经网络的语言模型。2.3. 基于预训练机制的的语言模型/大语言模型三、读入数据3.1. 不得不说的Transformer3.2. 影响力3.3. 根据人类反馈的强化学习3.4. 生成式AI3…...
惊艳!AI模型DIAMOND可模拟《反恐精英》,单张RTX 3090就能运行
最近,研究人员开发了一种名为 DIAMOND(Diffusion for World Modelling)的 AI 模型,它能够在神经网络中模拟著名的电脑游戏《反恐精英:全球攻势》(CS:GO)。 这个模型在一张 Nvidia RTX3090显卡上运行,能够达到每秒10帧…...
中波长线天线耦合的一个方法
围绕窗外墙外牵了10米的室外天线。 短波,fm都是很简单,一个夹子直接夹在拉杆天线上面,效果已经很好。 今天偶尔听到中波前面大约510khz的地方有个摩尔斯码。是成都附近机场的NDB。这个平时要在楼顶或者很空旷的地方才能收到。音量比较小&am…...
Java基础(6)
深拷贝和浅拷贝区别了解吗?什么是引用拷贝?关于深拷贝和浅拷贝区别,我这里先给结论:浅拷贝:浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部…...
[JAVAEE] 线程安全问题
目录 一. 什么是线程安全 二. 线程安全问题产生的原因 三. 线程安全问题的解决 3.1 解决修改操作不是原子性的问题 > 加锁 a. 什么是锁 b. 没有加锁时 c. 加锁时 d. 死锁 e. 避免死锁 3.2 解决内存可见性的问题 > volatile关键字 (易变的, 善变的) a. 不加…...
k8s 集群给用户生成 kubeconfig 文件
在 k8s 集群的 RBAC 里有用到用户、组的概念,但是它又不直接管理这些资源,而是通过外部身份验证机制(Authentication Mechanisms)来管理和定义的,比如证书进行签名时,将其配置为 Subject: O system:master…...
(八)Proteus仿真STM32单片机GPIO驱动数码管
1,参考上篇,将LED点阵屏更换成数码管如下图 2,修改驱动函数,数组seg[14]前10个是0-9数字的编码,后四个是空格,点,横线,下划线 char seg_decode(char num)//数字解码 {const char se…...
Python进阶知识1
Python函数 定义一个函数 1.什么是函数:函数是可以重复执行的语句块,可以重复调用 2.作用:用于封装语句块, 提高代码的重用性。 函数是面向过程编程的最小单位 def 语句 1.作用:用来定义( 创建)函数 2…...
单片机设计|基于STM32实现具有室内定位功能的智能手环的设计
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,…...
计算机网络——运输层(可靠传输、超时重传、选择确认、流量控制和拥塞控制、TCP连接和释放)
TCP可靠传输的实现 我们假定数据传输只在一个方向进行,即A发送数据,B给出确认。这样的好处是使讨论限于两个窗口,即发送方A的发送窗口和接收方B的接收窗口。 以字节为单位滑动窗口 发送方构造窗口 窗口前沿和后沿的移动情况 描述发送窗口的状…...
Web安全实践
前言 安全无小事,成败在细节,网络有风险,灾难弹指间。 安全一般情况下看不见,在你周围漂浮着,显现出来后,往往会刻骨铭心。正因为安全看不见,所以往往不受重视,因为感知到的概率真…...
【算法篇】动态规划类(2)——01背包+完全背包(笔记)
目录 一、理论基础 1. 问题类型 2. 01背包问题 3. 完全背包问题 4. 解题步骤 (1)确定dp数组(dp table)以及下标的含义。 (2)确定递推公式。 (3)dp数组如何初始化。 &#x…...
基于SpringBoot的“社区医院管理服务系统”的设计与实现(源码+数据库+文档+PPT)
基于SpringBoot的“社区医院管理服务系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统首页界面图 用户注册界面图 医生界面…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
