数据仓库分层设计概念
数据仓库分层设计是一种结构化方法,用于组织和管理数据仓库中的数据。这种设计方法通过将数据从原始数据逐步转换为满足业务分析需求的结构化数据,提高了数据处理效率、数据质量和一致性。数据仓库分层设计的主要目的包括支持数据的重用、优化性能、提高数据的一致性、可维护性和可拓展性,以及提高数据的可理解性和处理的灵活性.
数据仓库的典型分层结构
数据仓库的分层结构通常包括以下几个层次:
原始数据层(Raw Data Layer):直接从数据源导入的原始数据,通常未经过清洗和处理,用于保留数据的原始状态,为后续的数据处理提供基础.
数据清洗层(Staging Layer):对原始数据进行初步清洗和转换,以确保数据质量,为数据仓库的进一步处理做好准备.
操作数据层(Operational Data Store, ODS):存储经清洗和初步转换后的数据,接近实时更新,支持简单查询和操作,为数据分析和报表提供最新的、经过清洗的操作数据.
数据仓库层(Data Warehouse Layer):存储经过进一步加工、整合和历史化的高质量数据,为复杂查询和分析提供统一的数据视图.
数据集市层(Data Mart Layer):面向特定业务领域或部门的数据子集,为特定的业务需求和分析提供优化的数据结构.
分析和展示层(Analytics and Presentation Layer):为用户提供数据分析、报告和可视化的界面,将处理后的数据以易于理解的形式展现给业务用户和决策者.
分层设计的优势
数据仓库分层设计的优势包括:
清晰的数据结构:每一个数据分层都有其特定的作用和职责,便于使用和维护。
减少重复开发:通过中间层的数据复用,减少了重复计算的工作量。
统一数据口径:提供统一的数据出口和输出口径,确保数据的一致性。
复杂问题简单化:将复杂的任务分解成多个步骤,每层解决特定的问题,便于问题定位和解决。
方便数据血缘追踪:有助于追溯数据的来源,便于数据质量管理和问题排查.
数据仓库分层设计是构建高效、可靠、可扩展数据仓库的关键,支持企业进行复杂的业务分析和决策.
相关文章:
数据仓库分层设计概念
数据仓库分层设计是一种结构化方法,用于组织和管理数据仓库中的数据。这种设计方法通过将数据从原始数据逐步转换为满足业务分析需求的结构化数据,提高了数据处理效率、数据质量和一致性。数据仓库分层设计的主要目的包括支持数据的重用、优化性能、提高…...

【HTML】defer 和 async 属性在 script 标签中分别有什么作用?
需要这两个属性的原因? 首先我们要知道的是,浏览器在解析 HTML 的过程中,遇到了 script 元素是不能继续构建 DOM 树的。 它会停止解析构建,首先去下载 js 代码,并且执行 js 的脚本;只有在等到 js 脚本执行…...

扫视扫描路径预测的评估:主观评估数 据库和基于循环神经网络的度量 记录
记录一 随着势头的不断增强,扫视预测逐渐成 为培养视觉注意力的热门研究课题。在扫视预测中,每个模型通常生成一个覆盖一系列注视点的扫描路径,以模拟动态扫视行为。因此, 通常通过计算预测的扫描路径与所有人类扫描 路径之间的相…...

【Java数据结构】优先级队列(堆)
【本节目标】 1. 掌握堆的概念及实现 2. 掌握 PriorityQueue 的使用 一. 优先级队列 1 概念 前面学过队列,队列是一种先进先出 (FIFO) 的数据结构 ,但有些情况下, 操作的数据可能带有优先级,一般出队 列时,可…...

图书个性化推荐系统|基于springBoot的图书个性化推荐系统设计与实现(附项目源码+论文+数据库)
私信或留言即免费送开题报告和任务书(可指定任意题目) 目录 一、摘要 二、相关技术 三、系统设计 四、数据库设计 五、核心代码 六、论文参考 七、源码获取 一、摘要 本论文主要论述了如何使用JAVA语言开发一个图书个性化推荐系统&…...
通用车牌正则校验
要编写一个正则表达式来包含所有类型的车牌号,我们需要考虑以下几种常见的车牌类型: 1. 普通汽车车牌(蓝牌/黄牌) 规则:1个汉字 1个字母 5个字母或数字示例:京A12345、粤B5678X 2. 新能源车牌…...
使用 SSH 连接 GitLab 的常见问题及解决方案
使用 SSH 连接 GitLab 的常见问题及解决方案 在使用 SSH 连接到 GitLab 服务器时,可能会遇到类似于以下的错误信息: git192.168.xx.xxx: Permission denied (publickey).这个错误通常表示 SSH 无法验证你的公钥,导致无法访问 GitLab 仓库。…...

泛微E9开发 校验日期型字段是否符合要求
校验日期型字段是否符合要求 1、需求分析及展示效果1.1、需求确认1.2、展示效果 2、实现方法3、扩展知识——js日期相关函数 1、需求分析及展示效果 1.1、需求确认 “填报时间”是一个日期型字段,用户提出需求只能选择每个月的第二个周二,选择其他日期…...
ubuntu安装Vim和net-tools和htop
合并安装,快捷方便 sudo apt update sudo apt install net-tools vim htop在Ubuntu中安装Vim可以通过终端使用以下命令完成: sudo apt update sudo apt install vim这两条命令首先更新了本地的包索引,然后安装了Vim文本编辑器。 安装完成后…...
每天10个js面试题(六)
1、js数组方法? Array.push()此方法是在数组的后面添加新加元素,此方法改变了数组的长度Array.pop()此方法在数组后面删除最后一个元素,并返回数组,此方法改变了数组的长度 Array.shift()此方法在数组后面删除第一个元素…...

AIGC技术的学习 系列二
文章目录 前言一、AIGC是什么?1.1. 基本概念1.2机器学习分类二、 语言模型2.1. 基于统计的语言模型。2.2. 基于神经网络的语言模型。2.3. 基于预训练机制的的语言模型/大语言模型三、读入数据3.1. 不得不说的Transformer3.2. 影响力3.3. 根据人类反馈的强化学习3.4. 生成式AI3…...

惊艳!AI模型DIAMOND可模拟《反恐精英》,单张RTX 3090就能运行
最近,研究人员开发了一种名为 DIAMOND(Diffusion for World Modelling)的 AI 模型,它能够在神经网络中模拟著名的电脑游戏《反恐精英:全球攻势》(CS:GO)。 这个模型在一张 Nvidia RTX3090显卡上运行,能够达到每秒10帧…...

中波长线天线耦合的一个方法
围绕窗外墙外牵了10米的室外天线。 短波,fm都是很简单,一个夹子直接夹在拉杆天线上面,效果已经很好。 今天偶尔听到中波前面大约510khz的地方有个摩尔斯码。是成都附近机场的NDB。这个平时要在楼顶或者很空旷的地方才能收到。音量比较小&am…...

Java基础(6)
深拷贝和浅拷贝区别了解吗?什么是引用拷贝?关于深拷贝和浅拷贝区别,我这里先给结论:浅拷贝:浅拷贝会在堆上创建一个新的对象(区别于引用拷贝的一点),不过,如果原对象内部…...

[JAVAEE] 线程安全问题
目录 一. 什么是线程安全 二. 线程安全问题产生的原因 三. 线程安全问题的解决 3.1 解决修改操作不是原子性的问题 > 加锁 a. 什么是锁 b. 没有加锁时 c. 加锁时 d. 死锁 e. 避免死锁 3.2 解决内存可见性的问题 > volatile关键字 (易变的, 善变的) a. 不加…...
k8s 集群给用户生成 kubeconfig 文件
在 k8s 集群的 RBAC 里有用到用户、组的概念,但是它又不直接管理这些资源,而是通过外部身份验证机制(Authentication Mechanisms)来管理和定义的,比如证书进行签名时,将其配置为 Subject: O system:master…...

(八)Proteus仿真STM32单片机GPIO驱动数码管
1,参考上篇,将LED点阵屏更换成数码管如下图 2,修改驱动函数,数组seg[14]前10个是0-9数字的编码,后四个是空格,点,横线,下划线 char seg_decode(char num)//数字解码 {const char se…...
Python进阶知识1
Python函数 定义一个函数 1.什么是函数:函数是可以重复执行的语句块,可以重复调用 2.作用:用于封装语句块, 提高代码的重用性。 函数是面向过程编程的最小单位 def 语句 1.作用:用来定义( 创建)函数 2…...

单片机设计|基于STM32实现具有室内定位功能的智能手环的设计
作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,…...

计算机网络——运输层(可靠传输、超时重传、选择确认、流量控制和拥塞控制、TCP连接和释放)
TCP可靠传输的实现 我们假定数据传输只在一个方向进行,即A发送数据,B给出确认。这样的好处是使讨论限于两个窗口,即发送方A的发送窗口和接收方B的接收窗口。 以字节为单位滑动窗口 发送方构造窗口 窗口前沿和后沿的移动情况 描述发送窗口的状…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...