使用Dlib库实现人脸检测和关键点定位
目录
前言
一、安装Dlib库
二、人脸检测
三、人脸关键点定位
前言
Dlib是一个现代化的 C++ 工具包,提供了一些机器学习算法和工具,特别是在面部识别和人脸关键点检测方面非常流行。它具有易于使用的 Python 接口,并被广泛应用于计算机视觉项目中。
一、安装Dlib库
- 在这里提供了几个python版本的dlib库文件
- 下载dlib库的安装包,
- 在安装包所在文件夹输入cmd进入命令提示符
- 使用pip进行安装
Dlib库安装文件


二、人脸检测
- 使用dlib.get_frontal_face_detector() 创建人脸检测器
- 导入图片,传入检测器,返回检测到的所有人脸框
- 遍历每个人脸框,获取四个边的坐标,拼成左上角和右下角坐标
- 然后画出每个人脸的矩形框
import cv2
import dlibdetector = dlib.get_frontal_face_detector() # 创建人脸检测器
img = cv2.imread('quanjiafu1.jpg')
img = cv2.resize(img, None, fx=0.3, fy=0.3)faces = detector(img, 2)
# faces = detector(image,n)使用人脸检测器返回检测到的人脸
# 参数:image:待检测的可能含有人脸的图像。
# 参数n:表示采用上采样的次数。上采样会让图像变大,能够检测到更多人脸对象,提高小人脸的检测效果#通常建议将此参数设置为0 或1。较大的值会增加检测的准确性,但会降低处理速度。
# 返回值faces:返回检测图像中的所有人脸。for face in faces: # 对每个人脸框进行逐个处理x1 = face.left()y1 = face.top()x2 = face.right()y2 = face.bottom()cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow('result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
输出:

三、人脸关键点定位
- 下载人脸68个关键点的模型 人脸68关键点定位模型
- 使用dlib.shape_predictor()载入模型
- 使用模型检测人脸的关键点
- 使用.parts()属性获取关键点的x,y的坐标
- 然后在图片上画出关键点,并写出关键点的序号
import cv2
import dlib
import numpy as npimg = cv2.imread('xzq.png')
img = cv2.resize(img, None, fx=1.3, fy=1.3)detector = dlib.get_frontal_face_detector() # 构造人脸检测器
faces = detector(img, 0) # 检测人脸
print(faces) # 人脸轮廓矩形的四个顶点
# dlib.shape_predictor 载入模型
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')for face in faces:shape = predictor(img, face) # 获取关键点landmarks = np.array([[p.x, p.y] for p in shape.parts()]) # 将关键点转换成坐标形式for idx, point in enumerate(landmarks): # 绘制每一张脸的关键点pos = [point[0], point[1]]cv2.circle(img, pos, 2, color=(0, 255, 0), thickness=- 1) # 给关键点标出来cv2.putText(img, str(idx), pos, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1, cv2.LINE_AA) # 给关键点标上序号cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
输出:

相关文章:
使用Dlib库实现人脸检测和关键点定位
目录 前言 一、安装Dlib库 二、人脸检测 三、人脸关键点定位 前言 Dlib是一个现代化的 C 工具包,提供了一些机器学习算法和工具,特别是在面部识别和人脸关键点检测方面非常流行。它具有易于使用的 Python 接口,并被广泛应用于计算机视觉项…...
DNS隧道流量分析
DNS隧道 DNS协议又称域名系统是互联网的基础设施,只要上网就会用到,因而DNS协议是提供网络服务的重要协议,在黑客进入内网后会使用DNS、ICMP、HTTP等协议隧道隐藏通信流量。本文通过DNS隧道实验并对流量进行分析,识别DNS隧道流量…...
HCIP-HarmonyOS Application Developer 习题(十一)
(填空)1、某开发者在使用HarmonyOs的分布式力时,分布式_____能力是其他分布式能力的基础。 答案:软总线 分析:分布式软总线是手机、平板、智能穿戴、智慧屏、车机等分布式设备的通信基座,为设备之间的互联互…...
使用Ollama测试OpenAI的Swarm多智能体编排框架
Ollama https://ollama.com/ ollama run qwen2.5Install Requires Python 3.10 pip install githttps://github.com/openai/swarm.git代码V1 # 导入Swarm和Agent类 from swarm import Swarm, Agent from openai import OpenAI # 实例化Swarm客户端 openai_client OpenAI…...
C# 完美操作 Active Directory 详细总结,轻松玩转域管理
前言 嗨,大家好! 在这个数据信息飞速发展的 21 世纪,数据安全成为了每个企业关注的焦点,保护企业数据安全日益成为企业工作中的重中之重。 域服务器,尤其是微软的 Active Directory(AD)&…...
PCL 点云配准 KD-ICP算法(精配准)
目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 加载点云函数 2.1.2 构建KD树函数 2.1.3 KD-ICP配准函数 2.1.4 点云可视化函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法…...
uniapp打包安卓apk步骤
然后安装在手机上就可以啦...
Springboot 整合 Java DL4J 实现安防监控系统
🧑 博主简介:历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程,…...
【数据结构与算法】第1课—算法复杂度
文章目录 1. 数据结构2. 算法3. 算法效率4. 算法复杂度5. 算法时间复杂度5.1 大O的渐进表示法5.2 时间复杂度示例 6. 空间复杂度6.1 练习16.2 练习26.3 练习3 1. 数据结构 数据结构是计算机存储、组织数据的方式,指相互之间存在一种和多种特定关系的数据元素的集合&…...
利用高德API获取整个城市的公交路线并可视化(五)
如果说我比别人看得更远些,那是因为我站在了巨人的肩上。——牛顿 参考:使用高德API获取公交线路数据,无需代码_实时公交api-CSDN博客 记录于2024年10月,因数据获取受网站更新策略等影响可能会失效,故记录写作时间,同时拾人牙慧,优化了后半部分数据直接导出为csv和shp…...
DNS:互联网域名系统的核心
什么是 DNS? DNS(Domain Name System,域名系统)是互联网的一项基础服务,它负责将人类容易记忆的域名(如 www.example.com)转换成计算机可以识别的 IP 地址(如 192.0.2.1)…...
小猿口算炸鱼脚本
目录 写在前面: 一、关于小猿口算: 二、代码逻辑 1.数字识别 2.答题部分 三、代码分享: 补充:软件包下载 写在前面: 最近小猿口算已经被不少大学生攻占,小学生直呼有挂。原本是以为大学生都打着本…...
浅谈云原生--微服务、CICD、Serverless、服务网格
往期推荐 浅学React和JSX-CSDN博客 一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客 一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据 spark-CSDN博客 目录 1. 云原生概念和特点 2. 常见云模式 3. 云对外提供服务的…...
android app执行shell命令视频课程补充android 10/11适配-千里马android
(https://blog.csdn.net/learnframework/article/details/120103471) https://blog.csdn.net/learnframework/article/details/120103471 hi,有学员在学习跨进程通信专题课程时候,在实战app执行一个shell命令的项目时候,对课程本身的android …...
C++笔记-UTF8和UTF8-dom的区别
在文件格式上,UTF-8 和 UTF-8-BOM 是两种不同的编码方式,其中 UTF-8-BOM 包含字节顺序标记(BOM),而 UTF-8 则不包含。 UTF-8: UTF-8 是一种以字节为单位的可变长度字符编码,常用于以字节为单位…...
“探索Adobe Photoshop 2024:订阅方案、成本效益分析及在线替代品“
设计师们对Adobe Photoshop这款业界领先的图像编辑软件肯定不会陌生。如果你正考虑加入Photoshop的用户行列,可能会对其价格感到好奇。Photoshop的价值在于其强大的功能,而它的价格也反映了这一点。下面,我们就来详细了解一下Adobe Photoshop…...
网页复制粘贴助手,Chrome网页复制插件(谷歌浏览器复制插件)
一款解决网页限制复制问题的插件,当你遇到限制复制粘贴和右键的网页是不是很头痛?安装这个插件后,点下插件按钮就能解决了 碰到这种情况 也是非常头疼 chrome拓展-chrome插件-强制复制 当我们浏览网页的时候,看到感兴趣的内容就…...
【C++刷题】力扣-#118-杨辉三角
题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。在杨辉三角中,每个数是它正上方两个数的和。 示例 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例 2: 输入: numRows 1 输出: [[1]]题解 这个问题…...
Linux下的环境变量
目录 1.引言 1.1bash的部分工作 1.2main函数也有参数 1.3我们可以通过给main函数传入不同的参数,让同一份代码实现不同的功能 1.4先认识一个环境变量PATH,帮助Linux找到指令程序的地址 2.环境变量 2.1环境变量的概念 2.2见见其他的环境变量 2…...
Edge论文的创新点
创新点及其来源 1. 从灰度边缘重建RGB图像的方法(EdgRec) 基于的方法:传统的重建方法,如使用自动编码器或生成模型来重建正常样本的图像,并通过对原始图像和重建图像的比较来检测异常。 重建过程: 训练阶…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
