当前位置: 首页 > news >正文

使用Dlib库实现人脸检测和关键点定位

目录

前言

一、安装Dlib库

二、人脸检测

三、人脸关键点定位


前言

        Dlib是一个现代化的 C++ 工具包,提供了一些机器学习算法和工具,特别是在面部识别和人脸关键点检测方面非常流行。它具有易于使用的 Python 接口,并被广泛应用于计算机视觉项目中。

 

一、安装Dlib库

  1. 在这里提供了几个python版本的dlib库文件
  2. 下载dlib库的安装包,
  3. 在安装包所在文件夹输入cmd进入命令提示符
  4. 使用pip进行安装

Dlib库安装文件

 

二、人脸检测

  1. 使用dlib.get_frontal_face_detector() 创建人脸检测器
  2. 导入图片,传入检测器,返回检测到的所有人脸框
  3. 遍历每个人脸框,获取四个边的坐标,拼成左上角和右下角坐标
  4. 然后画出每个人脸的矩形框
import cv2
import dlibdetector = dlib.get_frontal_face_detector()  # 创建人脸检测器
img = cv2.imread('quanjiafu1.jpg')
img = cv2.resize(img, None, fx=0.3, fy=0.3)faces = detector(img, 2)
# faces = detector(image,n)使用人脸检测器返回检测到的人脸
# 参数:image:待检测的可能含有人脸的图像。
# 参数n:表示采用上采样的次数。上采样会让图像变大,能够检测到更多人脸对象,提高小人脸的检测效果#通常建议将此参数设置为0 或1。较大的值会增加检测的准确性,但会降低处理速度。
# 返回值faces:返回检测图像中的所有人脸。for face in faces:  # 对每个人脸框进行逐个处理x1 = face.left()y1 = face.top()x2 = face.right()y2 = face.bottom()cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.imshow('result', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

 

三、人脸关键点定位

  1. 下载人脸68个关键点的模型 人脸68关键点定位模型
  2. 使用dlib.shape_predictor()载入模型
  3. 使用模型检测人脸的关键点
  4. 使用.parts()属性获取关键点的x,y的坐标
  5. 然后在图片上画出关键点,并写出关键点的序号
import cv2
import dlib
import numpy as npimg = cv2.imread('xzq.png')
img = cv2.resize(img, None, fx=1.3, fy=1.3)detector = dlib.get_frontal_face_detector()  # 构造人脸检测器
faces = detector(img, 0)  # 检测人脸
print(faces)  # 人脸轮廓矩形的四个顶点
# dlib.shape_predictor 载入模型
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')for face in faces:shape = predictor(img, face)  # 获取关键点landmarks = np.array([[p.x, p.y] for p in shape.parts()])  # 将关键点转换成坐标形式for idx, point in enumerate(landmarks):  # 绘制每一张脸的关键点pos = [point[0], point[1]]cv2.circle(img, pos, 2, color=(0, 255, 0), thickness=- 1)  # 给关键点标出来cv2.putText(img, str(idx), pos, cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255, 255, 255), 1, cv2.LINE_AA)  # 给关键点标上序号cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

输出:

相关文章:

使用Dlib库实现人脸检测和关键点定位

目录 前言 一、安装Dlib库 二、人脸检测 三、人脸关键点定位 前言 Dlib是一个现代化的 C 工具包,提供了一些机器学习算法和工具,特别是在面部识别和人脸关键点检测方面非常流行。它具有易于使用的 Python 接口,并被广泛应用于计算机视觉项…...

DNS隧道流量分析

DNS隧道 DNS协议又称域名系统是互联网的基础设施,只要上网就会用到,因而DNS协议是提供网络服务的重要协议,在黑客进入内网后会使用DNS、ICMP、HTTP等协议隧道隐藏通信流量。本文通过DNS隧道实验并对流量进行分析,识别DNS隧道流量…...

HCIP-HarmonyOS Application Developer 习题(十一)

(填空)1、某开发者在使用HarmonyOs的分布式力时,分布式_____能力是其他分布式能力的基础。 答案:软总线 分析:分布式软总线是手机、平板、智能穿戴、智慧屏、车机等分布式设备的通信基座,为设备之间的互联互…...

使用Ollama测试OpenAI的Swarm多智能体编排框架

Ollama https://ollama.com/ ollama run qwen2.5Install Requires Python 3.10 pip install githttps://github.com/openai/swarm.git代码V1 # 导入Swarm和Agent类 from swarm import Swarm, Agent from openai import OpenAI # 实例化Swarm客户端 openai_client OpenAI…...

C# 完美操作 Active Directory 详细总结,轻松玩转域管理

前言 嗨,大家好! 在这个数据信息飞速发展的 21 世纪,数据安全成为了每个企业关注的焦点,保护企业数据安全日益成为企业工作中的重中之重。 域服务器,尤其是微软的 Active Directory(AD)&…...

PCL 点云配准 KD-ICP算法(精配准)

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 加载点云函数 2.1.2 构建KD树函数 2.1.3 KD-ICP配准函数 2.1.4 点云可视化函数 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法…...

uniapp打包安卓apk步骤

然后安装在手机上就可以啦...

Springboot 整合 Java DL4J 实现安防监控系统

🧑 博主简介:历代文学网(PC端可以访问:https://literature.sinhy.com/#/literature?__c1000,移动端可微信小程序搜索“历代文学”)总架构师,15年工作经验,精通Java编程,…...

【数据结构与算法】第1课—算法复杂度

文章目录 1. 数据结构2. 算法3. 算法效率4. 算法复杂度5. 算法时间复杂度5.1 大O的渐进表示法5.2 时间复杂度示例 6. 空间复杂度6.1 练习16.2 练习26.3 练习3 1. 数据结构 数据结构是计算机存储、组织数据的方式,指相互之间存在一种和多种特定关系的数据元素的集合&…...

利用高德API获取整个城市的公交路线并可视化(五)

如果说我比别人看得更远些,那是因为我站在了巨人的肩上。——牛顿 参考:使用高德API获取公交线路数据,无需代码_实时公交api-CSDN博客 记录于2024年10月,因数据获取受网站更新策略等影响可能会失效,故记录写作时间,同时拾人牙慧,优化了后半部分数据直接导出为csv和shp…...

DNS:互联网域名系统的核心

什么是 DNS? DNS(Domain Name System,域名系统)是互联网的一项基础服务,它负责将人类容易记忆的域名(如 www.example.com)转换成计算机可以识别的 IP 地址(如 192.0.2.1&#xff09…...

小猿口算炸鱼脚本

目录 写在前面: 一、关于小猿口算: 二、代码逻辑 1.数字识别 2.答题部分 三、代码分享: 补充:软件包下载 写在前面: 最近小猿口算已经被不少大学生攻占,小学生直呼有挂。原本是以为大学生都打着本…...

浅谈云原生--微服务、CICD、Serverless、服务网格

往期推荐 浅学React和JSX-CSDN博客 一文搞懂大数据流式计算引擎Flink【万字详解,史上最全】-CSDN博客 一文入门大数据准流式计算引擎Spark【万字详解,全网最新】_大数据 spark-CSDN博客 目录 1. 云原生概念和特点 2. 常见云模式 3. 云对外提供服务的…...

android app执行shell命令视频课程补充android 10/11适配-千里马android

(https://blog.csdn.net/learnframework/article/details/120103471) https://blog.csdn.net/learnframework/article/details/120103471 hi,有学员在学习跨进程通信专题课程时候,在实战app执行一个shell命令的项目时候,对课程本身的android …...

C++笔记-UTF8和UTF8-dom的区别

在文件格式上,UTF-8 和 UTF-8-BOM 是两种不同的编码方式,其中 UTF-8-BOM 包含字节顺序标记(BOM),而 UTF-8 则不包含。 UTF-8: UTF-8 是一种以字节为单位的可变长度字符编码,常用于以字节为单位…...

“探索Adobe Photoshop 2024:订阅方案、成本效益分析及在线替代品“

设计师们对Adobe Photoshop这款业界领先的图像编辑软件肯定不会陌生。如果你正考虑加入Photoshop的用户行列,可能会对其价格感到好奇。Photoshop的价值在于其强大的功能,而它的价格也反映了这一点。下面,我们就来详细了解一下Adobe Photoshop…...

网页复制粘贴助手,Chrome网页复制插件(谷歌浏览器复制插件)

一款解决网页限制复制问题的插件,当你遇到限制复制粘贴和右键的网页是不是很头痛?安装这个插件后,点下插件按钮就能解决了 碰到这种情况 也是非常头疼 chrome拓展-chrome插件-强制复制 当我们浏览网页的时候,看到感兴趣的内容就…...

【C++刷题】力扣-#118-杨辉三角

题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。在杨辉三角中,每个数是它正上方两个数的和。 示例 示例 1: 输入: numRows 5 输出: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]示例 2: 输入: numRows 1 输出: [[1]]题解 这个问题…...

Linux下的环境变量

目录 1.引言 1.1bash的部分工作 1.2main函数也有参数 1.3我们可以通过给main函数传入不同的参数,让同一份代码实现不同的功能 1.4先认识一个环境变量PATH,帮助Linux找到指令程序的地址 2.环境变量 2.1环境变量的概念 2.2见见其他的环境变量 2…...

Edge论文的创新点

创新点及其来源 1. 从灰度边缘重建RGB图像的方法(EdgRec) 基于的方法:传统的重建方法,如使用自动编码器或生成模型来重建正常样本的图像,并通过对原始图像和重建图像的比较来检测异常。 重建过程: 训练阶…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

渗透实战PortSwigger靶场:lab13存储型DOM XSS详解

进来是需要留言的&#xff0c;先用做简单的 html 标签测试 发现面的</h1>不见了 数据包中找到了一个loadCommentsWithVulnerableEscapeHtml.js 他是把用户输入的<>进行 html 编码&#xff0c;输入的<>当成字符串处理回显到页面中&#xff0c;看来只是把用户输…...

前端开发者常用网站

Can I use网站&#xff1a;一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use&#xff1a;Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站&#xff1a;MDN JavaScript权威网站&#xff1a;JavaScript | MDN...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...