当前位置: 首页 > news >正文

PCL 点云配准-4PCS算法(粗配准)

目录

一、概述

1.1原理

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.1.1 加载点云数据

2.1.2 执行4PCS粗配准

2.1.3 可视化源点云、目标点云和配准结果

2.2完整代码

三、实现效果

3.1原始点云

3.2配准后点云


PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        4PCS(四点一致集)算法是一种用于点云配准的粗配准方法。该算法通过寻找目标点云和源点云之间具有几何约束的四点集合进行匹配,继而估计出变换矩阵。4PCS 算法具有较好的抗噪性和计算效率,适用于较大尺度的点云配准场景。

1.1原理

4PCS 算法通过以下步骤进行粗配准:

  1. 点云采样:从源点云和目标点云中采样若干点,形成四点集合。
  2. 几何一致性验证:计算这四个点在两个点云中的相对距离,通过几何一致性约束找到符合要求的四点集合。
  3. 估计变换矩阵:使用一致的四点集合,计算源点云到目标点云的变换矩阵。
  4. 应用变换矩阵:将计算得到的变换矩阵应用到源点云上,使其与目标点云对齐。

配准结果的质量依赖于:

  • 重叠率:设置源点云和目标点云的近似重叠率。
  • 采样点数量:设置参与匹配的采样点数量。
  • 精度参数 Delta:控制配准的精度,通过对配准点云的稀疏化进行加速。

1.2实现步骤

  1. 加载源点云和目标点云。
  2. 设置4PCS配准参数:包括近似重叠率、采样点数量、精度参数等。
  3. 执行4PCS粗配准:通过设置参数执行粗配准,得到变换矩阵。
  4. 应用变换矩阵:将源点云应用变换矩阵对齐至目标点云。
  5. 可视化结果:将源点云、目标点云以及对齐后的点云进行可视化对比。

1.3应用场景

  1. 粗配准阶段:4PCS 可以用于点云配准的初步阶段,提供较为快速的粗略对齐结果,后续可以使用更精细的算法(如ICP)进行精配准。
  2. 多场景拼接:在多视角点云场景下,4PCS 可以帮助快速匹配不同视角的点云数据。
  3. 点云地图生成:在SLAM(同步定位与地图构建)中,4PCS 可以用于不同帧之间的点云匹配与对齐。

二、代码实现

2.1关键函数

2.1.1 加载点云数据

void loadPointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr& source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud)
{if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand_trans.pcd", *target_cloud) == -1) {PCL_ERROR("读取目标点云失败 \n");}if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand.pcd", *source_cloud) == -1) {PCL_ERROR("读取源点云失败 \n");}
}

2.1.2 执行4PCS粗配准

void perform4PCSRegistration(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr aligned_cloud, Eigen::Matrix4f& transformation_matrix)
{pcl::registration::FPCSInitialAlignment<pcl::PointXYZ, pcl::PointXYZ> fpcs;fpcs.setInputSource(source_cloud);fpcs.setInputTarget(target_cloud);fpcs.setApproxOverlap(0.7);         // 设置近似重叠率fpcs.setDelta(0.01);                // 精度参数fpcs.setNumberOfSamples(100);       // 采样点数量fpcs.align(*aligned_cloud);         // 执行配准transformation_matrix = fpcs.getFinalTransformation(); // 获取变换矩阵
}

2.1.3 可视化源点云、目标点云和配准结果

// 可视化源点云、目标点云和配准结果
void visualizePointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Point Cloud Registration Viewer"));viewer->setBackgroundColor(1.0, 1.0, 1.0);  // 设置背景颜色为黑色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> target_color(target_cloud, 255, 0, 0);viewer->addPointCloud(target_cloud, target_color, "target cloud"); // 目标点云(红色)pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_color(source_cloud, 0, 0, 255);viewer->addPointCloud(source_cloud, source_color, "source cloud"); // 源点云(蓝色)viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "source cloud");while (!viewer->wasStopped()) {viewer->spinOnce();}
}

2.2完整代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/ia_fpcs.h>
#include <pcl/console/time.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>// 加载点云数据
void loadPointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr& source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud)
{if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand_trans.pcd", *target_cloud) == -1) {PCL_ERROR("读取目标点云失败 \n");}if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand.pcd", *source_cloud) == -1) {PCL_ERROR("读取源点云失败 \n");}
}// 执行4PCS粗配准
void perform4PCSRegistration(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr aligned_cloud, Eigen::Matrix4f& transformation_matrix)
{pcl::registration::FPCSInitialAlignment<pcl::PointXYZ, pcl::PointXYZ> fpcs;fpcs.setInputSource(source_cloud);fpcs.setInputTarget(target_cloud);fpcs.setApproxOverlap(0.7);         // 设置近似重叠率fpcs.setDelta(0.01);                // 精度参数fpcs.setNumberOfSamples(1000);       // 采样点数量fpcs.align(*aligned_cloud);         // 执行配准transformation_matrix = fpcs.getFinalTransformation(); // 获取变换矩阵
}// 可视化源点云、目标点云和配准结果
// 可视化源点云、目标点云和配准结果
void visualizePointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Point Cloud Registration Viewer"));viewer->setBackgroundColor(1.0, 1.0, 1.0);  // 设置背景颜色为黑色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> target_color(target_cloud, 255, 0, 0);viewer->addPointCloud(target_cloud, target_color, "target cloud"); // 目标点云(红色)pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_color(source_cloud, 0, 0, 255);viewer->addPointCloud(source_cloud, source_color, "source cloud"); // 源点云(蓝色)viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "source cloud");while (!viewer->wasStopped()) {viewer->spinOnce();}
}int main(int argc, char** argv)
{pcl::console::TicToc time;pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud(new pcl::PointCloud<pcl::PointXYZ>);loadPointClouds(source_cloud, target_cloud);pcl::PointCloud<pcl::PointXYZ>::Ptr aligned_cloud(new pcl::PointCloud<pcl::PointXYZ>);Eigen::Matrix4f transformation_matrix;time.tic();perform4PCSRegistration(source_cloud, target_cloud, aligned_cloud, transformation_matrix);cout << "FPCS配准用时: " << time.toc() << " ms" << endl;cout << "变换矩阵:" << transformation_matrix << endl;//显示原始点云visualizePointClouds(source_cloud, target_cloud);//显示配准后点云visualizePointClouds(target_cloud, aligned_cloud);return 0;
}

三、实现效果

3.1原始点云

3.2配准后点云

相关文章:

PCL 点云配准-4PCS算法(粗配准)

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 加载点云数据 2.1.2 执行4PCS粗配准 2.1.3 可视化源点云、目标点云和配准结果 2.2完整代码 三、实现效果 3.1原始点云 3.2配准后点云 PCL点云算法汇总及实战案例汇总的目录地址链接…...

12、论文阅读:利用生成对抗网络实现无监督深度图像增强

Towards Unsupervised Deep Image Enhancement With Generative Adversarial Network 摘要介绍相关工作传统图像增强基于学习的图像增强 论文中提出的方法动机和目标网络架构损失函数1) 质量损失2) 保真损失3&#xff09;身份损失4&#xff09;Total Loss 实验 摘要 提高图像的…...

Axure重要元件三——中继器表单制作

亲爱的小伙伴&#xff0c;在您浏览之前&#xff0c;烦请关注一下&#xff0c;在此深表感谢&#xff01; 本节课&#xff1a;中继器表单制作 课程内容&#xff1a;利用中继器制作表单 应用场景&#xff1a;台账、表单 案例展示&#xff1a; 步骤一&#xff1a;建立一个背景区…...

DMAIC赋能智能家居:解锁未来生活新篇章!

从清晨自动拉开的窗帘&#xff0c;到夜晚自动调暗的灯光&#xff0c;每一处细节都透露着科技的温度与智慧的光芒。而在这场智能革命的浪潮中&#xff0c;DMAIC&#xff08;定义Define、测量Measure、分析Analyze、改进Improve、控制Control&#xff09;作为六西格玛管理的核心方…...

代码随想录算法训练营第二天| 209.长度最小的子数组 59.螺旋矩阵II 区间和 开发商购买土地

209. 长度最小的子数组 题目&#xff1a; 给定一个包含正整数的数组 nums 和一个正整数 target &#xff0c;找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 &#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0。 示例&#xff1a; 示例 1…...

mysql隐藏索引

1. 什么是隐藏索引&#xff1f; 在 MySQL 8 中&#xff0c;隐藏索引&#xff08;Invisible Indexes&#xff09;是指一种特殊类型的索引&#xff0c;它并不真正被删除&#xff0c;而是被标记为“不可见”。当索引被标记为不可见时&#xff0c;查询优化器在生成查询计划时将忽略…...

etcd入门到实战

概述&#xff1a;本文将介绍etcd特性、使用场景、基本原理以及Linux环境下的实战操作 入门 什么是etcd&#xff1f; etcd是一个分布式键值存储数据库 关键字解析&#xff1a; 键值存储&#xff1a;存储协议是 key—value 的形式&#xff0c;类似于redis分布式&#xff1a;…...

Build an Android project and get a `.apk` file on a Debian 11 command line

You can build an Android project and get a .apk file on a Debian 11 command line without using Android Studio. The process involves using the Android SDK command-line tools (sdkmanager, adb, and gradle). Here’s a step-by-step guide to building the ???…...

解读 Java 经典巨著《Effective Java》90条编程法则,第4条:通过私有构造器强化不可实例化的能力

文章目录 【前言】欢迎订阅【解读《Effective Java》】系列专栏java.lang.Math 类的设计经验总结 【前言】欢迎订阅【解读《Effective Java》】系列专栏 《Effective Java》是 Java 开发领域的经典著作&#xff0c;作者 Joshua Bloch 以丰富的经验和深入的知识&#xff0c;全面…...

Vivado HLS学习

视频链接: 6课&#xff1a;数据类型的转换_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1bt41187RW?spm_id_from333.788.videopod.episodes&vd_sourcea75d5585c5297210add71187236ec90b&p6 目录 1.数据类型的转换 2.自动类型转换 2.1隐式数据转换 2.2…...

一款AutoXJS现代化美观的日志模块AxpLogger

简介 Axp Logger是一款基于autox.js的现代化日志模块&#xff0c;具备窗口事件穿透、拖拽和缩放功能。 Axp Logger文档 特性现代化的UI设计支持点击穿透模式&#xff08;不影响脚本运行&#xff09;监听音量-键切换模式支持窗口操作模式窗口拖拽移动窗口自由缩放清空日志关闭日…...

成都睿明智科技有限公司共创抖音电商新篇章

在当今这个数字化浪潮汹涌的时代&#xff0c;抖音电商以其独特的魅力迅速崛起&#xff0c;成为众多商家竞相追逐的新蓝海。在这片充满机遇与挑战的领域中&#xff0c;成都睿明智科技有限公司凭借其专业的服务、创新的策略和敏锐的市场洞察力&#xff0c;成为了众多商家信赖的合…...

Spark的安装配置及集群搭建

Spark的本地安装配置&#xff1a; 我们用scala语言编写和操作spark&#xff0c;所以先要完成scala的环境配置 1、先完成Scala的环境搭建 下载Scala插件&#xff0c;创建一个Maven项目&#xff0c;导入Scala依赖和插件 scala依赖 <dependency><groupId>org.scal…...

网络编程基础-IO模型深入理解

一、IO的基本概念 什么是IO&#xff1f; I/O就是计算机内存与外部设备之间拷贝数据的过程 什么是网络IO&#xff1f; 网络IO是指在计算机网络环境中进行的输入和输出操作&#xff0c;涉及数据在网络设备之间的传输。 网络IO操作可以是发送请求、接收响应、下载文件、传输数…...

go 语言学习路线图(一)

1. Go语言简介 Go语言的历史背景和设计理念Go的优势&#xff1a;简洁、高效、并发支持强Go的应用场景&#xff1a;微服务、云计算、系统编程 2. 开发环境设置 安装Go语言开发环境 在Windows、macOS、Linux系统上的安装方法 配置环境变量&#xff1a;GOROOT 和 GOPATH验证安装…...

前端自动化部署,Netlify免费满足你

1 Netlify 介绍 为什么推荐 Netliy &#xff0c; 主要还是穷&#xff0c;Netlify 免费太香了 Netlify you优势100GB 内免费 &#xff0c;满足个人日常 需求&#xff0c;操作,兼容性绑定代码仓库&#xff0c;提交代码自动部署 支持 github , gitlab 等 大多常用代码仓库易操作只…...

Linux的开发工具gcc Makefile gdb的学习

一&#xff1a;gcc/g 1. 1 背景知识 1. 预处理&#xff08;进行宏替换) 预处理 ( 进行宏替换 ) 预处理功能主要包括宏定义,文件包含,条件编译,去注释等。 预处理指令是以#号开头的代码行。 实例: gcc –E hello.c –o hello.i 选项“-E”,该选项的作用是让 gcc 在预处理结…...

基于SSM出租车管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;车辆管理&#xff0c;驾驶员管理&#xff0c;基础数据管理&#xff0c;公告管理 驾驶员账号功能包括&#xff1a;系统首页&#xff0c;学生管理&#xff0c;车辆管理&#xff0c;公告管理 开发系统&a…...

iPhone照片内存怎么清理,参考这些方法

随着拍摄数量的增加&#xff0c;许多iPhone用户常常发现自己的手机存储空间不足&#xff0c;而照片无疑是占用空间的罪魁祸首之一。清理这些照片不仅能释放存储空间&#xff0c;还能提升设备的运行速度。小编将分享一些iPhone照片内存怎么清理的高效策略&#xff0c;助你告别冗…...

【Triton教程】向量相加

Triton 是一种用于并行编程的语言和编译器。它旨在提供一个基于 Python 的编程环境&#xff0c;以高效编写自定义 DNN 计算内核&#xff0c;并能够在现代 GPU 硬件上以最大吞吐量运行。 更多 Triton 中文文档可访问 →https://triton.hyper.ai/ 在本教程中&#xff0c;你将使…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区&#xff08;Partitioning&#xff09;是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分&#xff08;分区&#xff09;可以独立存储、管理和优化&#xff0c;…...

python爬虫——气象数据爬取

一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用&#xff1a; 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests&#xff1a;发送 …...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...