[LeetCode] 733. 图像渲染
题目描述:
有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。你也被给予三个整数 sr , sc 和 color 。你应该从像素 image[sr][sc] 开始对图像进行上色 填充 。
为了完成 上色工作:
- 从初始像素开始,将其颜色改为
color。 - 对初始坐标的 上下左右四个方向上 相邻且与初始像素的原始颜色同色的像素点执行相同操作。
- 通过检查与初始像素的原始颜色相同的相邻像素并修改其颜色来继续 重复 此过程。
- 当 没有 其它原始颜色的相邻像素时 停止 操作。
最后返回经过上色渲染 修改 后的图像 。
示例 1:

输入:image = [[1,1,1],[1,1,0],[1,0,1]],sr = 1, sc = 1, color = 2
输出:[[2,2,2],[2,2,0],[2,0,1]]
解释:在图像的正中间,坐标 (sr,sc)=(1,1) (即红色像素),在路径上所有符合条件的像素点的颜色都被更改成相同的新颜色(即蓝色像素)。
注意,右下角的像素 没有 更改为2,因为它不是在上下左右四个方向上与初始点相连的像素点。
示例 2:
输入:image = [[0,0,0],[0,0,0]], sr = 0, sc = 0, color = 0
输出:[[0,0,0],[0,0,0]]
解释:初始像素已经用 0 着色,这与目标颜色相同。因此,不会对图像进行任何更改。
提示:
m == image.lengthn == image[i].length1 <= m, n <= 500 <= image[i][j], color < 2160 <= sr < m0 <= sc < n
题目链接:
. - 力扣(LeetCode)
解题主要思路:
采用广度优先遍历策略即bfs,比如例1,第一层为image[1][1],我们将它入队列,然后检测它的上下左右,符合要求的为image[0][1]和image[1][0],以此为例继续探索第三层。
解题代码:
class Solution {
public:typedef pair<int, int> PII;int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {int pre = image[sr][sc];if (pre == color) return image;int m = image.size(), n = image[0].size();queue<PII> que;que.push(make_pair(sr, sc));while (que.size()) {auto [a, b] = que.front();que.pop();image[a][b] = color; // 上色for (int i = 0; i < 4; ++i) {// 检测它的上下左右是否需要上色int x = a + dx[i];int y = b + dy[i];if (x >= 0 && x < m && y >= 0 && y < n && image[x][y] == pre) {que.push(make_pair(x, y));}}}return image;}
};
相关文章:
[LeetCode] 733. 图像渲染
题目描述: 有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。你也被给予三个整数 sr , sc 和 color 。你应该从像素 image[sr][sc] 开始对图像进行上色 填充 。 为了完成 上色工作: 从初始像素…...
智能EDA小白从0开始 —— DAY23 PyAether深度解析与技术展望
引言:技术革新与行业需求的碰撞 在半导体行业快速发展的今天,芯片设计的复杂性和对效率的要求日益提升。传统的芯片设计工具和方法已经难以满足当前行业的需求,特别是在面对大规模、高性能芯片的设计时,设计师们面临着前所未有的…...
从深海探测到海洋强国:数字孪生助力海洋装备跨越式发展
海洋广袤无垠,蕴藏着丰富的资源。近现代以来,人类使用各种手段探索海洋探索,广袤无垠的海洋与人类的生活越来越紧密,至少10亿人口摄入的蛋白质来自海洋,全球超过90%的货物、数据信息交流在海洋中转;海洋中丰…...
架构师备考-背诵精华(系统质量属性)
系统质量属性 根据GB/T 16260.1 定义,从管理角度对软件系统质量进行度量,可将影响软件质量的主要因素划分为6种维度特性包括:功能性、可靠性、易用性、效率、维护性、可移植性 功能性 适合性、准确性、互操作性、依从性、安全性 可靠性 容错…...
Pycharm下载安装教程(详细步骤)+汉化设置教程
今天讲解的是Pycharm安装教程和配置汉化设置,希望能够帮助到大家。 创作不易,还请各位同学三连点赞!!收藏!!转发!!! 对于刚入门学习Python还找不到方向的小伙伴可以试试…...
网络安全入门
网络安全入门是指学习和了解网络安全基础知识和技术的入门阶段。网络安全是指保护计算机系统、网络和数据免受未经授权的访问、使用、泄露、破坏以及其他威胁的技术和措施。 要入门网络安全,可以按照以下步骤进行: 了解网络安全基本概念:学习…...
你真的了解Canvas吗--解密十【ZRender篇】
目录 👊🏻入口 动画讲解二 Animator Element Transformable graphic 总结 书接上篇你真的了解Canvas吗--解密九【ZRender篇】由于一个bug的篇幅需要续写这个下篇,不过那块的bug内容对我们这篇要讲的动画也是息息相关的,因为Transformable这个类主要就是和变换相…...
mac安装brew时踩坑解决方案
安装包 mac上如果按照git等工具可能会使用brew,例如使用:$ brew install git命令,如果电脑没有按照brew,则会提示:zsh: command not found: brew 解决方案 需要我们打开brew的官网https://brew.sh/,复制…...
基于Handsontable.js + Excel.js实现表格预览和导出功能(公式渲染)
本文记录在html中基于Handsontable.js Excel.js实现表格预览、导出、带公式单元格渲染功能,在这里我们在html中实现,当然也可以在vue、react等框架中使用npm下载导入依赖文件。 Handsontable官方文档 一、开发前的准备引入相关依赖库 <!DOCTYPE ht…...
重学SpringBoot3-集成Redis(十三)之点排行榜实现
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-集成Redis(十三)之点排行榜实现 1. 为什么选择 Redis 来实现排行榜?2. 项目环境准备2.1. 添加依赖2.2. 配置 Redis 连…...
Java 中方法参数传递的陷阱
前言 在编程过程中,我们经常会遇到一些看似简单却容易出错的问题。本文将通过一个具体的例子,探讨 Java 中方法参数传递的陷阱,并提供详细的解决方法。希望这篇文章能帮助你在未来的开发中避免类似的错误。 问题背景 假设我们的任务是计算…...
哪家云电脑便宜又好用?ToDesk云电脑、顺网云、达龙云全方位评测
陈老老老板🤴 🧙♂️本文专栏:生活(主要讲一下自己生活相关的内容)生活就像海洋,只有意志坚强的人,才能到达彼岸。 🧙♂️本文简述:讲一下市面上云电脑的对比。 🧙♂️上一篇文…...
【汇编语言】寄存器(内存访问)(三)—— 字的传送
文章目录 前言1. 字的传送2. 问题一3. 问题一的分析与解答4. 问题二5. 问题二的分析与解答结语 前言 📌 汇编语言是很多相关课程(如数据结构、操作系统、微机原理)的重要基础。但仅仅从课程的角度出发就太片面了,其实学习汇编语言…...
6 机器学习之应用现状
在过去二十年中,人类收集、存储、传输、处理数据的能力取得了飞速提升,人类社会的各个角落都积累了大量数据,亟需能有效地对数据进行分析利用的计算机算法,而机器学习恰顺应了大时代的这个迫切需求,因此该学科领域很自…...
相似度为 K 的字符串
题目链接 相似度为 K 的字符串 题目描述 注意 s1和s2只包含集合 {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’} 中的小写字母s2是s1的一个字母异位词 解答思路 可以深度优先遍历交换字母使得s1和s2尽可能接近,基本思路是:设定一个指针idx指向s1和s2的…...
[云] Project Analysis
项目要求分析: 开放性选题: 主题范围:任何与云计算系统相关的主题。项目类型:可以是技术、商业或研究项目。团队规模:最多可组成三人小组。 示例主题: 分析公共云数据:例如,AWS公共数…...
腾讯六宫格本地识别,本地模型识别,腾讯六图识别
基于K哥爬虫昨天发的文章,特此训练了一版腾讯模型,效果不错,特此感谢K哥的指导,效果如下图: 有需求,有疑问的欢迎评论区点出...
Transformer图解以及相关的概念
前言 transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。接下来本文将从顶层往下去一步步掀开transformer的面…...
Nginx缓存静态文件
在Python项目中,通过Nginx缓存静态文件(如CSS、JS、图片等),可以有效提升网页的加载性能。Nginx可以帮助你缓存静态资源,减少服务器负担,并加速页面加载。 1. 配置Nginx缓存静态文件 首先,你需…...
【隐私计算】隐语HEU同态加密算法解读
HEU: 一个高性能的同态加密算法库,提供了多种 PHE 算法, 包括ZPaillier、FPaillier、IPCL、Damgard Jurik、DGK、OU、EC ElGamal 以及基于FPGA和GPU硬件加速版本的Paillier版本。 本文我们会基于GPU运行HEU Docker容器,编译打包GPaillier并测…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
