[LeetCode] 733. 图像渲染
题目描述:
有一幅以 m x n
的二维整数数组表示的图画 image
,其中 image[i][j]
表示该图画的像素值大小。你也被给予三个整数 sr
, sc
和 color
。你应该从像素 image[sr][sc]
开始对图像进行上色 填充 。
为了完成 上色工作:
- 从初始像素开始,将其颜色改为
color
。 - 对初始坐标的 上下左右四个方向上 相邻且与初始像素的原始颜色同色的像素点执行相同操作。
- 通过检查与初始像素的原始颜色相同的相邻像素并修改其颜色来继续 重复 此过程。
- 当 没有 其它原始颜色的相邻像素时 停止 操作。
最后返回经过上色渲染 修改 后的图像 。
示例 1:
输入:image = [[1,1,1],[1,1,0],[1,0,1]],sr = 1, sc = 1, color = 2
输出:[[2,2,2],[2,2,0],[2,0,1]]
解释:在图像的正中间,坐标 (sr,sc)=(1,1)
(即红色像素),在路径上所有符合条件的像素点的颜色都被更改成相同的新颜色(即蓝色像素)。
注意,右下角的像素 没有 更改为2,因为它不是在上下左右四个方向上与初始点相连的像素点。
示例 2:
输入:image = [[0,0,0],[0,0,0]], sr = 0, sc = 0, color = 0
输出:[[0,0,0],[0,0,0]]
解释:初始像素已经用 0 着色,这与目标颜色相同。因此,不会对图像进行任何更改。
提示:
m == image.length
n == image[i].length
1 <= m, n <= 50
0 <= image[i][j], color < 216
0 <= sr < m
0 <= sc < n
题目链接:
. - 力扣(LeetCode)
解题主要思路:
采用广度优先遍历策略即bfs,比如例1,第一层为image[1][1],我们将它入队列,然后检测它的上下左右,符合要求的为image[0][1]和image[1][0],以此为例继续探索第三层。
解题代码:
class Solution {
public:typedef pair<int, int> PII;int dx[4] = {0, 0, 1, -1};int dy[4] = {1, -1, 0, 0};vector<vector<int>> floodFill(vector<vector<int>>& image, int sr, int sc, int color) {int pre = image[sr][sc];if (pre == color) return image;int m = image.size(), n = image[0].size();queue<PII> que;que.push(make_pair(sr, sc));while (que.size()) {auto [a, b] = que.front();que.pop();image[a][b] = color; // 上色for (int i = 0; i < 4; ++i) {// 检测它的上下左右是否需要上色int x = a + dx[i];int y = b + dy[i];if (x >= 0 && x < m && y >= 0 && y < n && image[x][y] == pre) {que.push(make_pair(x, y));}}}return image;}
};
相关文章:

[LeetCode] 733. 图像渲染
题目描述: 有一幅以 m x n 的二维整数数组表示的图画 image ,其中 image[i][j] 表示该图画的像素值大小。你也被给予三个整数 sr , sc 和 color 。你应该从像素 image[sr][sc] 开始对图像进行上色 填充 。 为了完成 上色工作: 从初始像素…...
智能EDA小白从0开始 —— DAY23 PyAether深度解析与技术展望
引言:技术革新与行业需求的碰撞 在半导体行业快速发展的今天,芯片设计的复杂性和对效率的要求日益提升。传统的芯片设计工具和方法已经难以满足当前行业的需求,特别是在面对大规模、高性能芯片的设计时,设计师们面临着前所未有的…...

从深海探测到海洋强国:数字孪生助力海洋装备跨越式发展
海洋广袤无垠,蕴藏着丰富的资源。近现代以来,人类使用各种手段探索海洋探索,广袤无垠的海洋与人类的生活越来越紧密,至少10亿人口摄入的蛋白质来自海洋,全球超过90%的货物、数据信息交流在海洋中转;海洋中丰…...

架构师备考-背诵精华(系统质量属性)
系统质量属性 根据GB/T 16260.1 定义,从管理角度对软件系统质量进行度量,可将影响软件质量的主要因素划分为6种维度特性包括:功能性、可靠性、易用性、效率、维护性、可移植性 功能性 适合性、准确性、互操作性、依从性、安全性 可靠性 容错…...

Pycharm下载安装教程(详细步骤)+汉化设置教程
今天讲解的是Pycharm安装教程和配置汉化设置,希望能够帮助到大家。 创作不易,还请各位同学三连点赞!!收藏!!转发!!! 对于刚入门学习Python还找不到方向的小伙伴可以试试…...
网络安全入门
网络安全入门是指学习和了解网络安全基础知识和技术的入门阶段。网络安全是指保护计算机系统、网络和数据免受未经授权的访问、使用、泄露、破坏以及其他威胁的技术和措施。 要入门网络安全,可以按照以下步骤进行: 了解网络安全基本概念:学习…...
你真的了解Canvas吗--解密十【ZRender篇】
目录 👊🏻入口 动画讲解二 Animator Element Transformable graphic 总结 书接上篇你真的了解Canvas吗--解密九【ZRender篇】由于一个bug的篇幅需要续写这个下篇,不过那块的bug内容对我们这篇要讲的动画也是息息相关的,因为Transformable这个类主要就是和变换相…...

mac安装brew时踩坑解决方案
安装包 mac上如果按照git等工具可能会使用brew,例如使用:$ brew install git命令,如果电脑没有按照brew,则会提示:zsh: command not found: brew 解决方案 需要我们打开brew的官网https://brew.sh/,复制…...

基于Handsontable.js + Excel.js实现表格预览和导出功能(公式渲染)
本文记录在html中基于Handsontable.js Excel.js实现表格预览、导出、带公式单元格渲染功能,在这里我们在html中实现,当然也可以在vue、react等框架中使用npm下载导入依赖文件。 Handsontable官方文档 一、开发前的准备引入相关依赖库 <!DOCTYPE ht…...

重学SpringBoot3-集成Redis(十三)之点排行榜实现
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-集成Redis(十三)之点排行榜实现 1. 为什么选择 Redis 来实现排行榜?2. 项目环境准备2.1. 添加依赖2.2. 配置 Redis 连…...
Java 中方法参数传递的陷阱
前言 在编程过程中,我们经常会遇到一些看似简单却容易出错的问题。本文将通过一个具体的例子,探讨 Java 中方法参数传递的陷阱,并提供详细的解决方法。希望这篇文章能帮助你在未来的开发中避免类似的错误。 问题背景 假设我们的任务是计算…...

哪家云电脑便宜又好用?ToDesk云电脑、顺网云、达龙云全方位评测
陈老老老板🤴 🧙♂️本文专栏:生活(主要讲一下自己生活相关的内容)生活就像海洋,只有意志坚强的人,才能到达彼岸。 🧙♂️本文简述:讲一下市面上云电脑的对比。 🧙♂️上一篇文…...

【汇编语言】寄存器(内存访问)(三)—— 字的传送
文章目录 前言1. 字的传送2. 问题一3. 问题一的分析与解答4. 问题二5. 问题二的分析与解答结语 前言 📌 汇编语言是很多相关课程(如数据结构、操作系统、微机原理)的重要基础。但仅仅从课程的角度出发就太片面了,其实学习汇编语言…...
6 机器学习之应用现状
在过去二十年中,人类收集、存储、传输、处理数据的能力取得了飞速提升,人类社会的各个角落都积累了大量数据,亟需能有效地对数据进行分析利用的计算机算法,而机器学习恰顺应了大时代的这个迫切需求,因此该学科领域很自…...

相似度为 K 的字符串
题目链接 相似度为 K 的字符串 题目描述 注意 s1和s2只包含集合 {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’} 中的小写字母s2是s1的一个字母异位词 解答思路 可以深度优先遍历交换字母使得s1和s2尽可能接近,基本思路是:设定一个指针idx指向s1和s2的…...
[云] Project Analysis
项目要求分析: 开放性选题: 主题范围:任何与云计算系统相关的主题。项目类型:可以是技术、商业或研究项目。团队规模:最多可组成三人小组。 示例主题: 分析公共云数据:例如,AWS公共数…...

腾讯六宫格本地识别,本地模型识别,腾讯六图识别
基于K哥爬虫昨天发的文章,特此训练了一版腾讯模型,效果不错,特此感谢K哥的指导,效果如下图: 有需求,有疑问的欢迎评论区点出...

Transformer图解以及相关的概念
前言 transformer是目前NLP甚至是整个深度学习领域不能不提到的框架,同时大部分LLM也是使用其进行训练生成模型,所以transformer几乎是目前每一个机器人开发者或者人工智能开发者不能越过的一个框架。接下来本文将从顶层往下去一步步掀开transformer的面…...
Nginx缓存静态文件
在Python项目中,通过Nginx缓存静态文件(如CSS、JS、图片等),可以有效提升网页的加载性能。Nginx可以帮助你缓存静态资源,减少服务器负担,并加速页面加载。 1. 配置Nginx缓存静态文件 首先,你需…...

【隐私计算】隐语HEU同态加密算法解读
HEU: 一个高性能的同态加密算法库,提供了多种 PHE 算法, 包括ZPaillier、FPaillier、IPCL、Damgard Jurik、DGK、OU、EC ElGamal 以及基于FPGA和GPU硬件加速版本的Paillier版本。 本文我们会基于GPU运行HEU Docker容器,编译打包GPaillier并测…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...