当前位置: 首页 > news >正文

Xilinx UltraScale系列FPGA纯verilog图像缩放,工程项目解决方案,提供2套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
    • FPGA高端图像处理培训
  • 2、相关方案推荐
    • 我这里已有的FPGA图像缩放方案
    • 本方案在Xilinx Artix7 系列FPGA上的应用
    • 本方案在Xilinx Kintex7 系列FPGA上的应用
    • 本方案在Xilinx Zynq7000 系列FPGA上的应用
    • 本方案在国产FPGA紫光同创系列上的应用
    • 本方案在国产FPGA高云系列上的应用
  • 3、设计思路框架
    • 设计框图
    • 输入视频之-->OV5640摄像头+动态彩条
    • 输入视频之-->HDMI解码芯片+动态彩条
    • 图像缩放模块详解
    • 图像缩放模块使用(重点阅读)
    • 图像缩放模块仿真
    • FDMA​图像缓存
    • HDMI视频输出架构
    • 工程源码架构
    • 配套的FPGA开发板
  • 4、工程代码1详解:KU060,OV5640输入版本
  • 5、工程代码2详解:KU060,HDMI输入版本
  • 6、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 7、上板调试验证并演示
    • 准备工作
    • 图像缩放案例1输出演示
    • 图像缩放案例2输出演示
    • 图像缩放案例3输出演示
  • 8、福利:工程源码获取

Xilinx UltraScale系列FPGA纯verilog图像缩放,工程项目解决方案,提供2套工程源码和技术支持

1、前言

没玩过图像缩放都不好意思说自己玩儿过FPGA,这是CSDN某大佬说过的一句话,鄙人深信不疑。。。目前市面上主流的FPGA图像缩放方案如下:
1:Xilinx的HLS方案,该方案简单,易于实现,但只能用于Xilinx自家的FPGA;关于HLS实现图像缩放请,参考我之前写的文章HLS实现图像缩放点击查看:
HLS图像缩放
2:非纯Verilog方案,大部分代码使用Verilog实现,但中间的fifo或ram等使用了IP,导致移植性变差,难以在Xilinx、Altera和国产FPGA之间自由移植;
3:纯Verilog方案,也就是本方案,一个字:牛逼!!!

工程概述

本文使用Xilinx的UltraScale系列FPGA纯verilog代码实现图像缩放;输入视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组或者板载HDMI输入;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用FPGA内部逻辑生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的parameter参数配置,默认使用ov5640作为视频源;FPGA首先对输入摄像头做i2c配置;然后采集输入视频;然后对输入视频做图像缩放操作;图像缩放模块可实现任意比例缩放,支持领域插值和双线性插值2种算法,通过模块顶层参数选择,默认使用双线性插值;缩放后的图像使用本博主常用的FDMA图像缓存架构进行图像缓存,本设计用DDR4做缓存介质实现3帧缓存;缩放后的视频最好进行缓存操作,因为缩放后原本的视频时序已经被打乱,不缓存的话直接读出基本是错误且不对齐的数据,导致输出的图像是乱码;缓存图像从DDR4读出后经过Native时序生成模块输出标准的VGA时序视频,然后经过纯verilog显示的RGB转HDMI模块输出HDMI差分视频;最后送显示器显示即可;本纯verilog图像缩放方案一共移植了16套工程源码,涵盖了目前市面上主流的FPGA平台;本博文介绍其中基于Xilinx UltraScale系列FPGA的2套工程,详情如下:
在这里插入图片描述
这里说明一下提供的4套工程源码的作用和价值,如下:

工程源码1

开发板FPGA型号为Xilinx–Kintex UltraScale–xcku060-ffva1156-2-i;输入视频源为OV5640摄像头模组或者FPGA内部逻辑生成的动态彩条;视频源的选择通过代码顶层的parameter参数配置,默认使用ov5640作为视频源;FPGA首先对OV5640摄像头做i2c配置,本设计将OV5640摄像头分辨率配置为1280x720@30Hz;然后采集输入视频,将2个时钟1个像素的RGB565转换为1个时钟1个像素的RGB888图像;然后对输入视频做图像缩放操作,将原视频从1280x720缩放到1920x1080,您可修改缩放参数轻松缩放到其他分辨率,工程只是举例,修改方法博客有说明;缩放后的图像使用本博主常用的FDMA图像缓存架构进行图像缓存,本设计用DDR4做缓存介质实现3帧缓存;缓存图像从DDR4读出后经过Native时序生成模块输出标准的VGA时序视频,输出有效分辨率为1920x1080@60Hz,为了兼容缩放后的其他分辨率,本设计将背景分辨率设计为1920x1080,缩放后的图像叠加在其上显示即可,这也是本博主的创新点;输出然后经过纯verilog显示的RGB转HDMI模块输出HDMI差分视频;最后送显示器显示即可;该工程适用于Xilinx UltraScale系列FPGA做图像缩放相关应用;

工程源码2

开发板FPGA型号为Xilinx–Kintex UltraScale–xcku060-ffva1156-2-i;输入视频为板载的HDMI输入接口,使用笔记本电脑模拟HDMI输入设备连接到开发板HDMI输入接口;HDMI解码方式为ADV7611芯片方案;FPGA纯verilog实现的i2c配置模块完成ADV7611配置,本设计将分辨率配置为1920x1080@60Hz,ADV7611输出RGB888视频流,FPGA采集到视频后打两拍以实现同步;然后对输入视频做图像缩放操作,将原视频从1920x1080缩放到1280x720,您可修改缩放参数轻松缩放到其他分辨率,工程只是举例,修改方法博客有说明;缩放后的图像使用本博主常用的FDMA图像缓存架构进行图像缓存,本设计用DDR4做缓存介质实现3帧缓存;缓存图像从DDR4读出后经过Native时序生成模块输出标准的VGA时序视频,输出有效分辨率为1280x720@60Hz,为了兼容缩放后的其他分辨率,本设计将背景分辨率设计为1920x1080,缩放后的图像叠加在其上显示即可,这也是本博主的创新点;输出然后经过纯verilog显示的RGB转HDMI模块输出HDMI差分视频;最后送显示器显示即可;该工程适用于Xilinx UltraScale系列FPGA做图像缩放相关应用;

本博客详细描述了FPGA高端项目:Xilinx UltraScale系列的纯verilog图像缩放工程解决方案的设计方案,工程代码可综合编译上板调试,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做学习提升,可应用于医疗、军工等行业的高速接口或图像处理领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网以及其他开源免费获取渠道等等),若大佬们觉得有所冒犯,请私信批评教育;部分模块源码转载自上述网络,版权归原作者所有,如有侵权请联系我们删除;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

FPGA高端图像处理培训

鉴于目前的FPGA就业和行业现状,本博推出了FPGA高端图像处理培训计划;该计划旨在让一部分人先学会FPGA纯verilog图像缩放,提高从业者的技术水平和工资待遇,详细计划如下:在这里插入图片描述

2、相关方案推荐

我这里已有的FPGA图像缩放方案

我的主页目前有FPGA图像缩放专栏,改专栏收录了我目前手里已有的FPGA图像缩放方案,从实现方式分类有基于HSL实现的图像缩放、基于纯verilog代码实现的图像缩放;从应用上分为单路视频图像缩放、多路视频图像缩放、多路视频图像缩放拼接;从输入视频分类可分为OV5640摄像头视频缩放、SDI视频缩放、MIPI视频缩放等等;以下是专栏地址:
点击直接前往

本方案在Xilinx Artix7 系列FPGA上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx UltraScale系列FPGA上的应用,想要直接应用于Xilinx Artix7 系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在Xilinx Kintex7 系列FPGA上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx UltraScale系列FPGA上的应用,想要直接应用于Xilinx Kintex7 系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在Xilinx Zynq7000 系列FPGA上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx UltraScale系列FPGA上的应用,想要直接应用于Xilinx Zynq7000 系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在国产FPGA紫光同创系列上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Artix7 系列FPGA上的应用,想要直接应用于国产FPGA紫光同创系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在国产FPGA高云系列上的应用

本方案适应于所有FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7020、紫光同创、高云等平台,本文讲述的是在Xilinx Artix7 系列FPGA上的应用,想要直接应用于国产FPGA高云系列FPGA的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

3、设计思路框架

设计框图

本博客提供2套vivado工程源码,设计框图如下:
在这里插入图片描述

输入视频之–>OV5640摄像头+动态彩条

输入视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用廉价的OV5640摄像头模组;如果你的手里没有摄像头,或者你的开发板没有摄像头接口,则可使用FPGA内部逻辑生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的parameter参数配置,默认使用ov5640作为视频源;模块顶层接口如下:
在这里插入图片描述
parameter SENSOR_TYPE = 0;输出ov5640的视频
parameter SENSOR_TYPE = 1;输出动态彩条的视频

OV5640摄像头需要i2c初始化配置,本设计配置为1280x720@30Hz分辨率,本设计提供纯verilog代码实现的i2c模块实现配置功能;此外,OV5640摄像头还需要将2个时钟1个像素的RGB565转换为1个时钟1个像素的RGB888图像;动态彩条则由FPGA内部逻辑实现,由纯verilog代码编写;模块代码架构如下:
在这里插入图片描述

输入视频之–>HDMI解码芯片+动态彩条

输入视频源有两种,分别对应开发者手里有没有摄像头的情况,一种是使用板载的HDMI输入视频接口;如果你的开发板没有HDMI输入接口,则可使用FPGA内部逻辑生成的动态彩条模拟摄像头视频;视频源的选择通过代码顶层的parameter参数配置,默认使用板载的HDMI输入视频接口;使用笔记本电脑接入HDMI输入接口,以模拟输入Sensor;本设计的HDMI解码方案为专用芯片ADV7611;FPGA纯verilog实现的i2c配置模块完成ADV7611配置,本设计将分辨率配置为1920x1080@60Hz,IT6802输出RGB888视频流;模块顶层接口如下:
在这里插入图片描述
parameter SENSOR_TYPE = 0;则输出HDMI接口采集的视频;
parameter SENSOR_TYPE = 1;则输出动态彩条的视频;
整个模块代码架构如下:
在这里插入图片描述

图像缩放模块详解

图像缩放模块功能框图如下,由跨时钟FIFO、插值+RAM阵列构成,跨时钟FIFO的目的是解决跨时钟域的问题,比如从低分辨率视频放大到高分辨率视频时,像素时钟必然需要变大,这是就需要异步FIFO了,插值算法和RAM阵列具体负责图像缩放算法层面的实现;
在这里插入图片描述
插值算法和RAM阵列以ram和fifo为核心进行数据缓存和插值实现,设计架构如下:
在这里插入图片描述
依据上图,图像缩放模块内部核心是例化了4个双口RAM,作用是缓存4行图像,以得到4个临近的像素,以此为基础做线性插值;如果是做图像放大操作,就以这4个临近的像素为基准,以线性插值为算法,在原图像中插入更多的像素点来扩大分辨率;如果是做图像缩小操作,就以这4个临近的像素为基准,以线性插值为算法,在原图像中删除更多的像素点来缩小分辨率;此外,前面描述的工作是实时的、整幅图像全部扫描式的进行,所以需要对RAM的读写操作进行精准控制;

图像缩放模块代码架构如下:模块的例化请参考工程源码的顶层代码;
在这里插入图片描述
图像缩放模块FIFO的选择可以调用工程对应的vivado工具自带的FIFO IP核,也可以使用纯verilog实现的FIFO,可通过接口参数选择,图像缩放模块顶层接口如下:
在这里插入图片描述
FIFO_TYPE选择原则如下:
1:总体原则,选择"xilinx"好处大于选择"verilog";
2:当你的FPGA逻辑资源不足时,请选"xilinx";
3:当你图像缩放的视频分辨率较大时,请选"xilinx";
4:当你的FPGA没有FIFO IP或者FIFO IP快用完了,请选"verilog";
5:当你向自学一下异步FIFO时,,请选"verilog";
6:不同FPGA型号对应的工程FIFO_TYPE参数不一样,但选择原则一样,具体参考代码;

2种插值算法的整合与选择
本设计将常用的双线性插值和邻域插值算法融合为一个代码中,通过输入参数选择某一种算法;
具体选择参数如下:

input  wire i_scaler_type //0-->bilinear;1-->neighbor

通过输入i_scaler_type 的值即可选择;

输入0选择双线性插值算法;
输入1选择邻域插值算法;

代码里的配置如下:
在这里插入图片描述

图像缩放模块使用(重点阅读)

图像缩放模块使用非常简单,顶层代码里设置了四个参数,如下:
在这里插入图片描述
上图是将输入视频分辨率从1280x720缩放为1920x1080;
如果你想将输入视频分辨率从1280x720缩放为640x480;
则只需修改为如下:
在这里插入图片描述
再比如你想将输入视频分辨率从1280x720缩放为960x540;
则只需修改为如下:
在这里插入图片描述

在本博主这里,想要实现图像缩放,操作就是这么无脑简单,就该两个参数就能搞定貌似高大上的双线性插值图像缩放,这种设计、这种操作、这种工程源码,你还喜欢吗?

图像缩放模块仿真

图像缩放模块需要vivado和matlab联合仿真;
需要注意的是,仿真的目的是为了验证,这一步我已经替你们做完了,所以读者不再需要单独仿真,如果读者是在需要自己仿真玩玩儿,需要自己写仿真代码;vivado和matlab联合仿真详细步骤如下:
第一步:网上下载一张1280X720的图片,并用matlab将图片转换为RGB格式的txt文档;
第二步:在vivado下设计tstbench,将RGB格式的txt文档作为视频输入源给到图像缩放模块,并将缩放后的图像数据写入输出txt文档;
第二步:用matlab将输出txt文档转换为图片,并于原图一并输出显示以做比较;
根据以上方法得到以下仿真结果:
双线性插值算法原图1280X720缩小到800x600如下:
在这里插入图片描述
邻域插值算法原图1280X720缩小到800x600如下:
在这里插入图片描述
双线性插值算法原图1280X720放大到1920x1080如下:
在这里插入图片描述
邻域插值算法原图1280X720放大到1920x1080如下:
在这里插入图片描述

FDMA​图像缓存

FDMA图像缓存架构实现的功能是将输入视频缓存到板载DDR3中再读出送后续模块,目的是实现视频同步输出,实现输入视频到输出视频的跨时钟域问题,更好的呈现显示效果;由于调用了Xilinx官方的MIG作为DDR控制器,所以FDMA图像缓存架构就是实现用户数据到MIG的桥接作用;架构如下:
在这里插入图片描述
FDMA图像缓存架构由FDMA控制器+FDMA组成;FDMA实际上就是一个AXI4-FULL总线主设备,与MIG对接,MIG配置为AXI4-FULL接口;FDMA控制器实际上就是一个视频读写逻辑,以写视频为例,假设一帧图像的大小为M×N,其中M代表图像宽度,N代表图像高度;FDMA控制器每次写入一行视频数据,即每次向DDR4中写入M个像素,写N次即可完成1帧图像的缓存,读视频与之一样;同时调用两个FIFO实现输入输出视频的跨时钟域处理,使得用户可以AXI4内部代码,以简单地像使用FIFO那样操作AXI总线,从而达到读写DDR的目的,进而实现视频缓存;本设计图像缓存方式为3帧缓存;图像缓存模块代码架构如下:
在这里插入图片描述
基于FDMA的图像缓存架构在Block Design设计中如下:
在这里插入图片描述

HDMI视频输出架构

缓存图像从DDR4读出后经过Native时序生成模块输出标准的VGA时序视频,然后经过纯verilog显示的RGB转HDMI模块输出HDMI差分视频;最后送显示器显示即可;需要注意的是,UltraScale系列FPGA不支持oserdese2原语,所以只能用oserdese3原语实现10 bit串化,基于此,本博主提供的RGB转HDMI模块可支持7系列、ULTRASCALE系列FPGA、ULTRASCALE_PLUS系 FPGA,顶层代码如下:
在这里插入图片描述
代码例化如下:
在这里插入图片描述

工程源码架构

提供2套工程源码,以工程源码1为例,工程Block Design设计如下:
在这里插入图片描述
提供2套工程源码,以工程源码1为例,综合后的工程源码架构如下:
在这里插入图片描述
工程编译后资源消耗低、功耗低、时序收敛,符合工程项目应用要求,如下:
在这里插入图片描述
上图只是举例,资源消耗并非本工程的实际消耗,实际消耗请看下文的《工程代码详解》;

配套的FPGA开发板

由于Xilinx UltraScale系列FPGA开发板价格普片较贵,所以暂不推荐具体的开发板。。。

4、工程代码1详解:KU060,OV5640输入版本

开发板FPGA型号:Xilinx–Kintex UltraScale–xcku060-ffva1156-2-i;
开发环境:Vivado2019.1;
输入:OV5640摄像头或者FPGA内部动态彩条,分辨率1280x720@30Hz;
输出:HDMI,RTL纯逻辑编码方案,输出分辨率1920x1080@60Hz;
图像缩放方案:纯Verilog图像缩放;
图像缩放实例:1280x720缩放到1920x1080,其他分辨率缩放可自行修改;
图像缓存方案:FDMA图像缓存+DDR3颗粒+图像3帧缓存;
实现功能:FPGA实现纯verilog图像缩放;
工程作用:掌握FPGA实现纯verilog图像缩放的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、工程代码2详解:KU060,HDMI输入版本

开发板FPGA型号:Xilinx–Kintex UltraScale–xcku060-ffva1156-2-i;
开发环境:Vivado2019.1;
输入:HDMI或者FPGA内部动态彩条,ADV7611芯片解码方案,分辨率1920x1080@60Hz,笔记本电脑模拟输入源;
输出:HDMI,RTL纯逻辑编码方案,输出分辨率1280x720@60Hz;
图像缩放方案:纯Verilog图像缩放;
图像缩放实例:1920x1080缩放到1280x720,其他分辨率缩放可自行修改;
图像缓存方案:FDMA图像缓存+DDR3颗粒+图像3帧缓存;
实现功能:FPGA实现纯verilog图像缩放;
工程作用:掌握FPGA实现纯verilog图像缩放的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

7、上板调试验证并演示

准备工作

需要如下器材设备:
1、FPGA开发板;推荐适用本博主配套的开发板;
2、OV5640摄像头或HDMI输入设备,比如笔记本电脑,两者都没有则使用动态彩条;
2、HDMI连接线和显示器;

图像缩放案例1输出演示

我将ov5640摄像头和动态彩条原图从1280x720缩小到800x600输出的视频剪辑整理后如下:
视频前半段为动态彩条原图从1280x720缩小到800x600输出;
视频前后段为ov5640摄像头原图从1280x720缩小到800x600输出;

R-720P-600P-2024

图像缩放案例2输出演示

我将ov5640摄像头和动态彩条原图从1280x720放大到1920x1080输出的视频剪辑整理后如下:
视频前半段为动态彩条原图从1280x720放大到1920x1080输出;
视频前后段为ov5640摄像头原图从1280x720放大到1920x1080输出;

R-720P-1080P-2024

图像缩放案例3输出演示

我将HDMI输入和动态彩条原图从1920x1080缩小到1280x720输出的视频剪辑整理后如下:
左边视频为笔记本1920x1080的原视频;
右边视频为FPGA缩放到1280x720的视频;

R-1080P-720P-2024

8、福利:工程源码获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

相关文章:

Xilinx UltraScale系列FPGA纯verilog图像缩放,工程项目解决方案,提供2套工程源码和技术支持

目录 1、前言工程概述免责声明FPGA高端图像处理培训 2、相关方案推荐我这里已有的FPGA图像缩放方案本方案在Xilinx Artix7 系列FPGA上的应用本方案在Xilinx Kintex7 系列FPGA上的应用本方案在Xilinx Zynq7000 系列FPGA上的应用本方案在国产FPGA紫光同创系列上的应用本方案在国产…...

React(二) JSX中的this绑定问题;事件对象参数传递;条件渲染;列表渲染;JSX本质;购物车案例

文章目录 一、jsx事件绑定1. 回顾this的绑定方式2. jsx中的this绑定问题(1) 方式一:bind绑定(2) 方式二:使用 ES6 class fields 语法(3) 方式三:直接传入一个箭头函数(重要) 3.事件参数传递(1) 传递事件对象event(2) 传递其他参数 4. 事件绑定…...

前端开发攻略---取消已经发出但是还未响应的网络请求

目录 注意&#xff1a; 1、Axios实现 2、Fetch实现 3、XHR实现 注意&#xff1a; 当请求被取消时&#xff0c;只会本地停止处理此次请求&#xff0c;服务器仍然可能已经接收到了并处理了该请求。开发时应当及时和后端进行友好沟通。 1、Axios实现 <!DOCTYPE html> &…...

韩信走马分油c++

韩信走马分油c 题目算法代码 题目 把油桶里还剩下的10斤油平分&#xff0c;只有一个能装3斤的油葫芦和一个能装7斤的瓦罐。如何分。 算法 油壶编号0&#xff0c;1&#xff0c;2。不同倒法有&#xff1a;把油从0倒进0&#xff08;本壶到本壶&#xff0c;无效&#xff09;&…...

【Linux】Anaconda下载安装配置Pytorch安装配置(保姆级)

目录 Anaconda下载 Anaconda安装 conda init conda --v Conda 配置 conda 环境创建 conda info --envs conda list Pytorch安装配置 检验安装情况 检验是否可以使用GPU Anaconda下载 可以通过两种途径完成Anaconda安装包的下载 途径一&#xff1a;本地windows下…...

渗透测试导论

渗透测试的定义和目的 渗透测试&#xff08;Penetration Testing&#xff09;是一项安全演习&#xff0c;网络安全专家尝试查找和利用计算机系统中的漏洞。 模拟攻击的目的是识别攻击者可以利用的系统防御中的薄弱环节。 这就像银行雇用别人假装盗匪&#xff0c;让他们试图闯…...

鸿蒙学习笔记--搭建开发环境及Hello World

文章目录 一、概述二、开发工具下载安装2.1 下载开发工具DevEco Studio NEXT2.2 安装DevEco Studio 三、启动软件四、第一个应用Hello World4.1 创建应用4.2 创建模拟器4.3 开启Hyper-v功能4.4 启动虚拟机 剑子仙迹 诗号&#xff1a;何须剑道争锋&#xff1f;千人指&#xff0c…...

【ArcGIS风暴】ArcGIS字段计算器公式汇总

在GIS数据处理中,ArcGIS的字段计算器是一个强大的工具,它可以帮助我们进行各种数值计算、文本处理和逻辑判断。本文将为您整合和分类介绍ArcGIS字段计算器中的常用公式,并通过实例说明它们的应用。 文章目录 一、数值计算类二、文本处理类三、日期和时间类四、逻辑判断类五、…...

探索秘境:如何使用智能体插件打造专属的小众旅游助手『小众旅游探险家』

文章目录 摘要引言智能体介绍和亮点展示介绍亮点展示 已发布智能体运行效果智能体创意想法创意想法创意实现路径拆解 如何制作智能体可能会遇到的几个问题快速调优指南总结未来展望 摘要 本文将详细介绍如何使用智能体平台开发一款名为“小众旅游探险家”的旅游智能体。通过这…...

机械臂力控方法概述(一)

目录 1. MoveIt 适用范围 2. 力控制框架与 MoveIt 的区别 3. 力控方法 3.1 直接力控制 (Direct Force Control) 3.2 间接力控制 (Indirect Force Control) 3.2.1 柔顺控制 (Compliant Control) 3.2.2 阻抗控制 (Impedance Control) 3.2.3 导纳控制 (Admittance Control…...

1971. 寻找图中是否存在路径

有一个具有 n 个顶点的 双向 图&#xff0c;其中每个顶点标记从 0 到 n - 1&#xff08;包含 0 和 n - 1&#xff09;。图中的边用一个二维整数数组 edges 表示&#xff0c;其中 edges[i] [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点对由 最多一条 边连接&#x…...

FLINK SQL语法(1)

DDL Flink SQL DDL&#xff08;Data Definition Language&#xff09;是Flink SQL中用于定义和管理数据结构和数据库对象的语法。以下是对Flink SQL DDL的详细解析&#xff1a; 一、创建数据库&#xff08;CREATE DATABASE&#xff09; 语法&#xff1a;CREATE DATABASE [IF…...

【Fargo】1:基于libuv的udp收发程序

开发UDP处理程序 我正在开发一个基于libuv的UDP发送/接收程序,区分发送端和接收端,设计自定义包数据结构,识别和处理丢包和乱序。 创建项目需求 用户正在要求一个使用libuv的C++程序,涉及UDP发送和接收,数据包包括序列号和时间戳,接收端需要检测丢包和乱序包。 撰写代…...

WebSocket介绍和入门案例

目录 一、WebSocket 详解1. 定义与特点&#xff1a;2. 工作原理&#xff1a;3. 应用场景&#xff1a; 二、入门案例 一、WebSocket 详解 1. 定义与特点&#xff1a; WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许客户端和服务器之间进行实时、双向的数据传…...

k8s集群版本升级

Kubernetes 集群版本升级是为了获得最新的功能、增强的安全性和性能改进。然而&#xff0c;升级过程需要谨慎进行&#xff0c;特别是在生产环境中。通常&#xff0c;Kubernetes 集群的版本升级应遵循逐步升级的策略&#xff0c;不建议直接跳过多个版本。 Kubernetes 版本升级的…...

XML 和 SimpleXML 简介

XML 和 SimpleXML 简介 XML&#xff08;可扩展标记语言&#xff09;是一种用于存储和传输数据的标记语言。它定义了一组规则&#xff0c;用于在文档中编码数据&#xff0c;以便人和机器都能理解。XML 的设计目标是既易于人类阅读&#xff0c;也易于机器解析。SimpleXML 是 PHP…...

MySQL 中 LIKE 语句的 `%` 和 `_` 以及 BLOB 和 TEXT 的详细解析和案例示范

1. LIKE 语句中的 % 和 _ 用法 1.1 % 通配符的用法 % 通配符代表零个或多个字符。它是 MySQL 中用于模糊匹配的强大工具之一&#xff0c;可以在任何字符的位置使用。 示例 1&#xff1a;查找以特定字符开头的记录 假设我们有一个电商订单系统的 orders 表&#xff0c;其中包…...

git clone卡在Receiving objects

git clone卡在Receiving objects 一直卡主 $ git clone gitxxx.git Cloning into xxx... remote: Enumerating objects: 75926, done. remote: Counting objects: 100% (18844/18844), done. remote: Compressing objects: 100% (6566/6566), done. Receiving objects: 60% (…...

vue+ant 弹窗可以拖动

通过自定义指令实现拖拽功能 在main.js里加入drag自定义指令 我自己测试时发现modal不管如何设置宽度&#xff0c;居中等&#xff0c;他的初始的left都为0&#xff0c;如果不设置好&#xff0c;容易出现点击后刚开始移动弹窗会偏移一段距离。 Vue.directive(drag, {bind(el)…...

(42)MATLAB中使用fftshift绘制以零为中心的功率谱

文章目录 前言一、MATLAB代码二、仿真结果画图 前言 在分析信号的频率分量时&#xff0c;将零频分量平移到频谱中心会很有帮助。本例给出绘制以零为中心的功率谱的方法。 一、MATLAB代码 代码如下&#xff1a; f 1; % 余弦波的振荡频率&#xf…...

Windows本地部署中文羊驼模型(Chinese-Alpaca-Pro-7B)(通俗易懂版)

最近由于项目原因需要部署大语言模型, 但碍于经济实力, 只能部署在笔记本电脑上部署量化模型, &#xff08;电脑至少有16G运行内存&#xff09;&#xff0c;搜集了网上的相关部署资料仍然踩了不少坑&#xff0c;原因在于开源项目在不断更新&#xff0c;导致我们看了别人的教程仍…...

Web3的挑战与机遇:技术发展的现状分析

在Web3的世界中&#xff0c;去中心化和用户主权的理念正逐渐走向主流&#xff0c;推动了现有商业模式和技术生态系统的深刻变革。区块链技术及其核心应用之一——智能合约&#xff0c;正在促使这一转变的发生。智能合约的主要功能是通过自动化和预设协议执行&#xff0c;以减少…...

LangGraph - Hierarchical Agent Teams

本文翻译整理自 Hierarchical Agent Teams https://langchain-ai.github.io/langgraph/tutorials/multi_agent/hierarchical_agent_teams/ 文章目录 一、前言二、设置三、创建工具四、Helper Utilities五、定义代理 Team研究 Team文档写作Team 六、添加图层 一、前言 在前面的…...

2021-04-14 proteus中仿真时74HC245三态双向端口扩展输出

缘由proteus中仿真时74HC245输出时电平显示灰色&#xff08;不确定电平状态&#xff09;是为什么&#xff1f;-编程语言-CSDN问答 缘由C语言翻译单片机开关检测器-编程语言-CSDN问答 参考74ls245的工作原理及作用详解 - 电子发烧友网 参考74ls245_百度百科...

解决UNSPSC商品分类的层级不足的方法

《联合国标准产品和服务守则》&#xff08;UNSPSC&#xff09;是一个分层框架&#xff0c;旨在对产品和服务进行分类。其主要目标是通过提供统一的方法来对产品和服务进行分类&#xff0c;从而简化采购和供应链管理。 虽然 UNSPSC 有效地将产品分为各种商品类别&#xff0c;但…...

Pytest基于fixture的参数化及解决乱码问题

我们知道&#xff0c;Pytest是Python技术栈下进行自动化测试的主流测试框架。支持灵活的测试发现、执行策略&#xff0c;强大的Fixture夹具和丰富的插件支持。 除了通过pytest的parametrize标签进行参数化外&#xff0c;我们通过fixture的param参数也可以比较方便地实现参数化…...

使用excel.js(layui-excel)进行layui多级表头导出,根据单元格内容设置背景颜色,并将导出函数添加到toolbar

本段是菜狗子的碎碎念&#xff0c;解决办法请直接从第二段开始看。layui多级表头的导出&#xff0c;弄了两天才搞定&#xff0c;中途一度想放弃&#xff0c;还好坚持下来了。一开始用的是layui的toolbar里自带的那个导出&#xff0c;但是多级表头没有正常导出&#xff0c;单元格…...

Mysql 5.7 安装与卸载(非常详细)

一、环境介绍 操作系统&#xff1a;CentOS 7 MySQL&#xff1a;5.7 二、MySQL卸载 # 查看软件 rpm -qa|grep mysql # 卸载MySQL yum remove -y mysql mysql-libs mysql-common rm -rf /var/lib/mysql rm /etc/my.cnf 继续查看是否还有 MySQL 软件&#xff0c;有的话继续删…...

030 elasticsearch查询、聚合

文章目录 查询聚合查询RestHighLevelClientElasticsearchRestTemplat SpringData对ES客户端的封装&#xff1a;ElasticsearchRestTemplate SpringData对CRUD的封装&#xff1a;ElasticsearchRepository 原生ES客户端&#xff1a;RestHighLevelClient 查询 package com.xd.cube…...

前端工程启动工具

一些思考 在公司项目中&#xff0c;需要启一个新的前端工程&#xff08;一个基于Webpack的React工程&#xff09;。因为同一个项目中有其他的前端工程&#xff0c;我们最开始想的是参考另外一个工程的配置重启一个新的工程&#xff0c;但是又因为原来的工程用的库版本都比较老…...