pytorh学习笔记——cifar10(一)生成数据
CIFAR(Canadian Institute For Advanced Research)是一个用于图像识别研究的数据集。CIFAR数据集包含多个子数据集,最常用的是CIFAR-10和CIFAR-100。
CIFAR-10数据集包含60000张32x32彩色图像,分为10个类别,每个类别有6000张图像。这10个类别包括飞机、汽车、鸟类、猫、鹿、狗、青蛙、船和卡车。
CIFAR-100数据集则包含60000张32x32彩色图像,分为100个类别,每个类别有600张图像。这些类别是按照更细致的分类标准划分的。
由于CIFAR数据集图像尺寸较小,处理速度较快,适合用于研究和教学。同时,CIFAR数据集也提供了数据的原始像素值和相应的类别标签,方便研究人员进行各种实验和分析。
一、下载和解压数据
数据集的地址:
CIFAR-10 and CIFAR-100 datasets
下载数据集,得到
cifar-10-python.tar.gz这个文件,将其解压缩至当前目录下,它会生成\cifar-10-batches-py这个文件夹,文件夹下的内容为:
在这个文件夹下再新建两个子文件夹:test和train,用以存放测试和训练的图片。这样,本项目的目录结构和文件内容如图:
二、生成和保存图像文件
在项目的根目录下新建python脚本unpack.py
1、获取训练用的数据集的所有文件名
import pickle
import globdef unpickle(file): # 解压数据,本段代码来自cifar官网 http://www.cs.utoronto.ca/~kriz/cifar.htmlwith open(file, 'rb') as fo:dict = pickle.load(fo, encoding='bytes')return dict# 输出的类别标签名,从cifar官网可以复制得到
label_name = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']tran_list = glob.glob('E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_*') # 获取所有需要训练的原始数据集文件名# “glob.glob ()” 是 Python# 中的一个函数,用于查找符合特定模式的文件路径名。# 它返回一个列表,包含所有匹配指定模式的文件路径。# 例如,“glob.glob ('*.txt')” 将返回当前目录下所有扩展名为 “.txt” 的文件的路径。print(tran_list) # ['E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_1',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_2',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_3',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_4',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_5']
print(len(tran_list)) # 5
从cifar官网可以获得解压数据的函数代码和类别标签的文字列表。至此,获得了训练用的数据集的所有文件名。
2、依次读取文件
# 依次读取每个文件
for l in tran_list: # 依次读取每个文件l_dict = unpickle(l) # 读取文件,返回一个字典print(l_dict.keys()) # dict_keys([b'batch_label', b'labels', b'data', b'filenames'])'''这个数据集包含了图像数据和相关的元数据。batch_label指的是每个数据批次的标签,labels是具体的分类标签,data是图像数据,而filenames则是图像文件的名称'''print(l_dict[b'batch_label']) # batch 1 of 5...print(l_dict[b'labels'][:10]) # [6, 9, 9, 4, 1, 1, 2, 7, 8, 3] # 类别标签print(l_dict[b'data'][:10]) # [102 111 196 77 117 123 134 130 141 135] # 图像数据print(l_dict[b'filenames'][:3]) # [b'compact_car_s_001706.png', b'icebreaker_s_001689.png', b'peke_s_000545.png'] # 文件名
3、转换格式
这里要知道一下cifar数据集对图像数据的存储方式:CIFAR-10数据集的data字段存储格式是原始的二进制数据,这些数据代表图像的像素值。每个图像都是32x32像素的彩色图像,因此每个图像有3072个字节(32x32x3),其中每个字节代表一个颜色通道(红、绿、蓝)的一个像素值。
具体来说,CIFAR-10数据集的data字段中,每3072个连续的字节(32x32x3)代表一张图像。
这3072个字节被分为三个部分,每个部分1024(32x32)个字节,分别对应图像的红、绿、蓝三个颜色通道。
每个颜色通道的1024个字节又被进一步分为32块,每个块包含32个字节,对应图像中的一行中的所有像素(每个像素是1列),这样的行共有32行。
例如,对于第一张图像,前1024个字节代表红色通道,接下来的1024个字节代表绿色通道,最后的1024个字节代表蓝色通道。
在Python中,将这些数据以NumPy数组的形式存储和处理,数组的形状为(3072,),将其重塑为(3, 32, 32)的形状,以便于进行图像处理和显示。
进一步的,为了在opencv中处理图像,又将数组转置成opencv的形状。
# 依次读取每个文件
for l in tran_list: # 依次读取每个文件l_dict = unpickle(l) # 读取文件,返回一个字典# print(l_dict.keys()) # dict_keys([b'batch_label', b'labels', b'data', b'filenames'])'''这个数据集包含了图像数据和相关的元数据。batch_label指的是每个数据批次的标签,labels是具体的分类标签,data是图像数据,而filenames则是图像文件的名称'''# print(l_dict[b'batch_label']) # batch 1 of 5...# print(l_dict[b'labels'][:10]) # [6, 9, 9, 4, 1, 1, 2, 7, 8, 3] # 类别标签# print(l_dict[b'data'][:10]) # [102 111 196 77 117 123 134 130 141 135] # 图像数据# print(l_dict[b'filenames'][:3]) # [b'compact_car_s_001706.png', b'icebreaker_s_001689.png', b'peke_s_000545.png'] # 文件名for im_idx, im_data in enumerate(l_dict[b'data']): # 依次读取每个文件中的图像数据])im_data = im_data.reshape(3, 32, 32).transpose(1, 2, 0) # 转换格式并生成图像数据'''在CIFAR-10数据集中,图像数据的原始存储格式是(3, 32, 32),这意味着每个图像有三个维度:红色通道、绿色通道和蓝色通道,每个通道都是一个32x32的矩阵。这种格式是为了方便按通道存储和处理数据。然而,在大多数图像处理库中,如Pillow或OpenCV,图像通常以(高度, 宽度, 通道)的格式存储,即(32, 32, 3)。这样的格式更符合人们直观上对图像的理解,即先看到高度,然后是宽度,最后是颜色通道。因此,代码中的im_data.reshape(3, 32, 32).transpose(1, 2, 0)操作是为了将数据从CIFAR-10的原始存储格式(3, 32, 32)转换为更通用的图像处理格式(32, 32, 3)。transpose(1, 2, 0)操作就是将三个维度重新排列,使得高度成为第一个维度,宽度成为第二个维度,通道成为第三个维度。'''im_label = l_dict[b'labels'][im_idx] # 获取类别标签print(label_name[im_label])cv2.imshow('show', cv2.resize(im_data, (100, 100))) # 显示图像cv2.waitKey(0) # 等待按键
运行之后:
至此,已经把元数据转换为图像数据。
4、保存图像:
im_name = l_dict[b'filenames'][im_idx] # 获取文件名dir_name = 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\train\\'+label_name[im_label] # 当前类别文件夹名if not os.path.exists(dir_name): # 如果不存在os.makedirs(dir_name) # 创建文件夹cv2.imwrite(dir_name+'\\'+im_name.decode('utf-8')+'.png', im_data) # 保存图像
这样,就会创建每个分类的文件夹,并在文件夹中存储了所有的图像文件
其中一个文件夹中的图像文件:
当前进度的所有代码:
import pickle
import glob
import numpy as np
import cv2# 解压数据,本段代码来自cifar官网 http://www.cs.utoronto.ca/~kriz/cifar.html
def unpickle(file):with open(file, 'rb') as fo:dict = pickle.load(fo, encoding='bytes')return dict# 输出的类别标签名,从cifar官网可以复制得到
label_name = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']# 获取所有需要训练的原始数据集文件名
tran_list = glob.glob('E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_*') # 获取所有需要训练的原始数据集文件名# “glob.glob ()” 是 Python# 中的一个函数,用于查找符合特定模式的文件路径名。# 它返回一个列表,包含所有匹配指定模式的文件路径。# 例如,“glob.glob ('*.txt')” 将返回当前目录下所有扩展名为 “.txt” 的文件的路径。# print(tran_list) # ['E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_1',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_2',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_3',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_4',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_5']
# print(len(tran_list)) # 5# 依次读取每个文件
for l in tran_list: # 依次读取每个文件l_dict = unpickle(l) # 读取文件,返回一个字典# print(l_dict.keys()) # dict_keys([b'batch_label', b'labels', b'data', b'filenames'])'''这个数据集包含了图像数据和相关的元数据。batch_label指的是每个数据批次的标签,labels是具体的分类标签,data是图像数据,而filenames则是图像文件的名称'''# print(l_dict[b'batch_label']) # batch 1 of 5...# print(l_dict[b'labels'][:10]) # [6, 9, 9, 4, 1, 1, 2, 7, 8, 3] # 类别标签# print(l_dict[b'data'][:10]) # [102 111 196 77 117 123 134 130 141 135] # 图像数据# print(l_dict[b'filenames'][:3]) # [b'compact_car_s_001706.png', b'icebreaker_s_001689.png', b'peke_s_000545.png'] # 文件名for im_idx, im_data in enumerate(l_dict[b'data']): # 依次读取每个文件中的图像数据])im_data = im_data.reshape(3, 32, 32).transpose(1, 2, 0) # 转换格式并生成图像数据'''在CIFAR-10数据集中,图像数据的原始存储格式是(3, 32, 32),这意味着每个图像有三个维度:红色通道、绿色通道和蓝色通道,每个通道都是一个32x32的矩阵。这种格式是为了方便按通道存储和处理数据。然而,在大多数图像处理库中,如Pillow或OpenCV,图像通常以(高度, 宽度, 通道)的格式存储,即(32, 32, 3)。这样的格式更符合人们直观上对图像的理解,即先看到高度,然后是宽度,最后是颜色通道。因此,代码中的im_data.reshape(3, 32, 32).transpose(1, 2, 0)操作是为了将数据从CIFAR-10的原始存储格式(3, 32, 32)转换为更通用的图像处理格式(32, 32, 3)。transpose(1, 2, 0)操作就是将三个维度重新排列,使得高度成为第一个维度,宽度成为第二个维度,通道成为第三个维度。'''im_label = l_dict[b'labels'][im_idx] # 获取类别标签print(label_name[im_label])cv2.imshow('show', cv2.resize(im_data, (100, 100))) # 显示图像cv2.waitKey(0) # 等待按键
4、转换测试集图片
将上述代码稍加修改,转换测试集图片:
import os
import pickle
import glob
import numpy as np
import cv2# 解压数据,本段代码来自cifar官网 http://www.cs.utoronto.ca/~kriz/cifar.html
def unpickle(file):with open(file, 'rb') as fo:dict = pickle.load(fo, encoding='bytes')return dict# 输出的类别标签名,从cifar官网可以复制得到
label_name = ['airplane','automobile','bird','cat','deer','dog','frog','horse','ship','truck']# 获取所有需要训练的原始数据集文件名
tran_list = glob.glob('E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\test_batch*') # 获取所有需要训练的原始数据集文件名# “glob.glob ()” 是 Python# 中的一个函数,用于查找符合特定模式的文件路径名。# 它返回一个列表,包含所有匹配指定模式的文件路径。# 例如,“glob.glob ('*.txt')” 将返回当前目录下所有扩展名为 “.txt” 的文件的路径。# print(tran_list) # ['E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_1',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_2',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_3',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_4',# 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\data_batch_5']
# print(len(tran_list)) # 5# 依次读取每个文件
for l in tran_list: # 依次读取每个文件l_dict = unpickle(l) # 读取文件,返回一个字典# print(l_dict.keys()) # dict_keys([b'batch_label', b'labels', b'data', b'filenames'])'''这个数据集包含了图像数据和相关的元数据。batch_label指的是每个数据批次的标签,labels是具体的分类标签,data是图像数据,而filenames则是图像文件的名称'''# print(l_dict[b'batch_label']) # batch 1 of 5...# print(l_dict[b'labels'][:10]) # [6, 9, 9, 4, 1, 1, 2, 7, 8, 3] # 类别标签# print(l_dict[b'data'][:10]) # [102 111 196 77 117 123 134 130 141 135] # 图像数据# print(l_dict[b'filenames'][:3]) # [b'compact_car_s_001706.png', b'icebreaker_s_001689.png', b'peke_s_000545.png'] # 文件名for im_idx, im_data in enumerate(l_dict[b'data']): # 依次读取每个文件中的图像数据])im_data = im_data.reshape(3, 32, 32).transpose(1, 2, 0) # 转换格式并生成图像数据'''在CIFAR-10数据集中,图像数据的原始存储格式是(3, 32, 32),这意味着每个图像有三个维度:红色通道、绿色通道和蓝色通道,每个通道都是一个32x32的矩阵。这种格式是为了方便按通道存储和处理数据。然而,在大多数图像处理库中,如Pillow或OpenCV,图像通常以(高度, 宽度, 通道)的格式存储,即(32, 32, 3)。这样的格式更符合人们直观上对图像的理解,即先看到高度,然后是宽度,最后是颜色通道。因此,代码中的im_data.reshape(3, 32, 32).transpose(1, 2, 0)操作是为了将数据从CIFAR-10的原始存储格式(3, 32, 32)转换为更通用的图像处理格式(32, 32, 3)。transpose(1, 2, 0)操作就是将三个维度重新排列,使得高度成为第一个维度,宽度成为第二个维度,通道成为第三个维度。'''im_label = l_dict[b'labels'][im_idx] # 获取类别标签# print(label_name[im_label])# cv2.imshow('show', cv2.resize(im_data, (100, 100))) # 显示图像# cv2.waitKey(0) # 等待按键# with open(im_name, 'wb') as fo: # 保存图像# fo.write(im_data) # 写入图像数据im_name = l_dict[b'filenames'][im_idx] # 获取文件名dir_name = 'E:\\AI_tset\\cifar10_demo\\cifar-10-python\\cifar-10-batches-py\\test\\'+label_name[im_label] # 当前类别文件夹名if not os.path.exists(dir_name): # 如果不存在os.makedirs(dir_name) # 创建文件夹cv2.imwrite(dir_name+'\\'+im_name.decode('utf-8')+'.png', im_data) # 保存图像
执行上述脚本,得到测试集的图片集。
三、
相关文章:

pytorh学习笔记——cifar10(一)生成数据
CIFAR(Canadian Institute For Advanced Research)是一个用于图像识别研究的数据集。CIFAR数据集包含多个子数据集,最常用的是CIFAR-10和CIFAR-100。 CIFAR-10数据集包含60000张32x32彩色图像,分为10个类别,每…...

pikachu靶场SSRF-curl测试报告
目录 一、测试环境 1、系统环境 2、使用工具/软件 二、测试目的 三、操作过程 1、实现ssrf攻击 四、源代码分析 五、结论 一、测试环境 1、系统环境 渗透机:本机(127.0.0.1) 靶 机:本机(127.0.0.1) 2、使用工具/软件 测试网址:…...

Java项目-基于Springboot的农机电招平台项目(源码+说明).zip
作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…...

Systemd:简介
1号进程 Systemd是linux系统的守护进程,它要管理正在运行的 Linux 主机的许多方面,包括挂载文件系统、管理硬件、处理定时器以及启动和管理生产性主机所需的系统服务。 $ ps -u -p 1 USER PID %CPU %MEM VSZ RSS TTY STAT START TI…...

Snapshot包和Release包区别
Snapshot包和Release包区别 Snapshot包: 代表开发中的版本,可能不稳定。 经常更新,包含最新的功能和修复。 通常用于测试和开发阶段。 Release包: 代表稳定的、经过全面测试的版本。 版本号通常是固定的,适合生产环…...

最近网站频繁跳转到黑产网站,怀疑是51.la统计代码的问题
最近我的几个网站,都出现了一个问题,就是访问的时候会莫名其妙的跳转到黑产网站。 通过排查了网页代码,发现网页都有一个共同点,就是使用了51.la统计。为什么会怀疑是51la统计代码问题?因为我的网页只有统计代码外没有…...

【python_修改PPT中字体,run.font.name只对英文生效怎么办?】
python_修改PPT中字体,run.font.name只对英文生效怎么办? 参考:使用pptx_ea_font库设置中文字体 from pptx import Presentation from pptx.util import Pt from pptx_ea_font import set_font# 打开现有的 PPT 文件 prs Presentation(D:\…...

【web】JDBC
项目连接数据库 右侧导航栏找到databsae 如果没有驱动,先下载驱动 填写数据库用户名密码 勾选对应的表即可 JDBC代码流程 1,配置信息 2,加载驱动 从MySQL Connector/J 5.1版本开始,推荐使用com.mysql.cj.jdbc.Driver这个新的驱动类。 3,链接数据库…...

MATLAB代码介绍:一段轨迹的指纹定位,KNN,三维,四个锚点(附源代码,可复制粘贴)
文章目录 产品介绍:三维指纹定位 KNN MATLAB 模型概述源代码运行结果功能亮点代码结构应用场景结论产品介绍:三维指纹定位 KNN MATLAB 模型 概述 本 MATLAB 代码实现了一种基于 KNN(K-Nearest Neighbors)算法的三维指纹定位系统,利用四个基站(锚点)信号强度进行移动终…...

XML Schema 复合空元素
XML Schema 复合空元素 XML Schema 是一种用于定义 XML 文档结构和内容的语言。在 XML Schema 中,元素可以被定义为简单类型或复杂类型。简单类型元素不能包含其他元素或属性,而复杂类型元素可以包含其他元素、属性或两者都有。复合空元素是一种特殊类型…...

Java面向对象编程基础(二)
Java面向对象编程基础二 一、package与import关键字的使用1.说明2.包的作用3.JDK中主要的包4. import5.import关键字的使用 二、封装性1.为什么要封装?2.如何封装?3.作用4.权限修饰符的权限大小5.案例 三、构造器1 构造器的使用说明2 案例: 四、实例变量赋值过程1 …...

[PHP]重复的Notice错误信息
<?php $a []; var_dump($a[name]);执行结果: 原因: display_errors和error_reporting都打开了Notice错误信息...

2024年第四届“网鼎杯”网络安全大赛-赛前模拟训练
文章目录 网络安全(WEB)签到题WEB01WEB02 二进制漏洞安全(PWN)PWN01潜在的安全漏洞分析攻击步骤exp 逆向工程(REVERSE)REVERSE01代码分析重构密码 密码学(CRYPTO)CRYPTO01CRYPTO02 杂…...

AI金融攻防赛:YOLO理论学习及赛题进阶思路(DataWhale组队学习)
引言 大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者。本系列文章是我跟随DataWhale 2024年10月学习赛的AI金融攻防赛学习总结文档。本文主要讲解如何在金融场景凭证篡改检测中应用YOLO算法。我们将从模型概述、数据准备、训练流程以及模…...

Spring Security 基础配置详解(附Demo)
目录 前言1. 基本知识2. Demo3. 实战 前言 基本的Java知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全)【Java项目】实战CRUD的功能整理(持续更新) 1. 基本知识 HttpSecurity 是 Spri…...

代码随想录打卡Day1
文章目录 day011 数组理论基础2 二分查找法3 移除元素4 平方数 day01 Java JDK是17.0.11 1 数组理论基础 数组是存放在连续内存空间上的相同类型数据的集合。 数组下标都是从0开始的。 数组内存空间的地址是连续的。 因为数组在内存空间的地址是连续的,所以我们…...

Vue快速创建工程+Element Plus
创建Vue工程 执行命令 npm init vuelatest 执行这两个绿色的命令 执行这个命令启动 npm run dev Element 打开网站https://element-plus.org/zh-CN/ npm install element-plus --save 然后在vscode中打开你的项目工程 // main.ts import { createApp } from vue import Ele…...

汽车管理系统——主界面制作
目录 主界面需要有什么?然后要做什么?添加两个主菜单(声明)下一步应该干什么?能够跳转到文件有哪几个动作?动作如何声明?为什么用选择声明指针,不选择直接声明这个对象? …...

C++ 右值引用深入理解:特性、优化与底层
目录 一、左右值的概念及右值的种类 二、左值引用与右值引用 左值引用给右值取别名: 右值引用给左值取别名: 三、引用的意义及左值引用的场景 四、移动构造: 右值引用在底层里的实现: 一、左右值的概念及右值的种类 在 C …...

C# 文件操作
文章目录 文件系统FileInfo和DirectoryInfo类完成一个文件的拷贝判断一个文件是否存在FileInfo和DirectoryInfo的属性列表FileInfo和DirectoryInfo的方法列表读写文件文件系统 下面的类用于浏览文件系统和执行操作,比如移动,复制和删除文件。 System.MarshalByRefObject 这个…...

FFmpeg 4.3 音视频-多路H265监控录放C++开发三 :安装QT5.14.2, 并将QT集成 到 VS2019中。
一,安装QT, 重点:在安装QT的时候要安装msvc201x版本的组件, 二 , 安装 qt-vs-tools Index of /development_releases/vsaddin/2.8.1 三,需要安装过 windows10 SDK,一般我们在安装vs2019的时候就…...

Linux 累加计算递归算法汇编实现
1...n可以使用公式计算,同时也是递归实现的很好例子,其c实现代码为 int f(int i) {i && (if(i-1));return i; } 其终止条件为0,此时i && (if(i-1))表达式不成立,不计算if(i-1)直接返回0&…...

明日周刊-第23期
十月已过半,气温也转凉了,大家注意保温哦。冬吃萝卜,夏吃姜,在快要到来的冬季大家可以选择多吃点萝卜。 配图是本周末去商场抓娃娃的时候拍的照片,现在抓娃娃单次普遍都控制在1块钱以下了,还记得多年前的抓…...

kubernets(二)
集群操作 查看集群信息 kubectl get查看各组件信息 格式:kubectl get 资源类型 【资源名】 【选项】 events #查看集群中的所有日志信息 -o wide # 显示资源详细信息,包括节点、地址... -o yaml/json #将当前资源对象输出至 yaml/json 格式文…...

《YOLO 标注工具全览》
《YOLO 标注工具全览》 一、YOLO 标注工具的重要性二、常见的 YOLO 标注工具介绍(一)LabelImg(二)Yolo_Label(三)在线标注工具 Make Sense(四)Ybat - YOLO BBox Annotation Tool&…...

财富思维学习
四大象限: 人类财富创造史经历的五个阶段: 1、黄色(土地)财务阶段:拥有土地和劳动力是财富的要求 2、蓝色(海)财富阶段:谁拥有贸易的通道谁就拥有财富(如港口ÿ…...

python爬虫加解密分析及实现
第一种: 1、找到加密的接口地址,通过加密的接口地址全局搜索 2、通过打断点的方式,操作页面,跑到断点处时,即可找到加密串,如图二; 3、找到用的是哪种加密方式,如: cr…...

用Java做智能客服,基于私有知识库
构建Java智能客服系统的整体思路 使用Java构建智能客服系统的整体思路是: 首先将客服QA文档以Word形式导入到系统中,通过向量化处理存入知识库。 当用户提出问题时,系统会根据问题内容从知识库中检索相关的上下文信息,并结合大…...

软考(网工)——网络安全
文章目录 🕐网络安全基础1️⃣网络安全威胁类型2️⃣网络攻击类型 🕑现代加密技术1️⃣私钥密码/对称密码体制2️⃣对称加密算法总结3️⃣公钥密码/非对称密码4️⃣混合密码5️⃣国产加密算法 - SM 系列6️⃣认证7️⃣基于公钥的认证 🕒Hash …...

如何给手机换ip地址
在当今数字化时代,IP地址作为设备在网络中的唯一标识,扮演着举足轻重的角色。然而,有时出于隐私保护、网络访问需求或其他特定原因,我们可能需要更改手机的IP地址。本文将详细介绍几种实用的方法,帮助您轻松实现手机IP…...