当前位置: 首页 > news >正文

【深度学习】RNN的简单实现

目录

1.RNNCell

2.RNN

3.RNN_Embedding


1.RNNCell

import torchinput_size = 4
hidden_size = 4
batch_size = 1idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]  # 输入:hello
y_data = [3, 1, 2, 3, 2]  # 期待:ohlol# 独热向量
one_hot_lookup = [[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]inputs = torch.Tensor(x_one_hot).view(-1, batch_size, input_size)  # (seqLen,batchSize,inputSize)
labels = torch.LongTensor(y_data).view(-1, 1)  # (seqLen,1)class Model(torch.nn.Module):def __init__(self, input_size, hidden_size, batch_size):super(Model, self).__init__()self.batch_size = batch_sizeself.input_size = input_sizeself.hidden_size = hidden_sizeself.rnncell = torch.nn.RNNCell(input_size=self.input_size,hidden_size=self.hidden_size)def forward(self, input, hidden):hidden = self.rnncell(input, hidden)  # input:(batch, input_size) hidden:(batch, hidden_size)return hiddendef init_hidden(self):return torch.zeros(self.batch_size, self.hidden_size)net = Model(input_size, hidden_size, batch_size)criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.1)for epoch in range(15):loss = 0optimizer.zero_grad()hidden = net.init_hidden()print('Predicted string: ', end='')for input, label in zip(inputs, labels):hidden = net(input, hidden)loss += criterion(hidden, label)idx = torch.argmax(hidden, dim=1)print(idx2char[idx.item()], end='')loss.backward()optimizer.step()print(', Epoch [%d/15] loss=%.4f' % (epoch+1, loss.item()))

2.RNN

import torchinput_size = 4  # 输入的维度,例如hello为四个字母表示,其维度为四
hidden_size = 4  # 隐藏层维度
num_layers = 1  # number of layers
batch_size = 1
seq_len = 5idx2char = ['e', 'h', 'l', 'o']
x_data = [1, 0, 2, 2, 3]  # 输入:hello
y_data = [3, 1, 2, 3, 2]  # 期待:ohlol# 独热向量
one_hot_lookup = [[1, 0, 0, 0],[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]]
x_one_hot = [one_hot_lookup[x] for x in x_data]inputs = torch.Tensor(x_one_hot).view(seq_len, batch_size, input_size)
labels = torch.LongTensor(y_data)  # (seqSize*batchSize, 1)class Model(torch.nn.Module):def __init__(self, input_size, hidden_size, batch_size, num_layers=1):super(Model, self).__init__()self.num_layers = num_layersself.batch_size = batch_sizeself.input_size = input_sizeself.hidden_size = hidden_sizeself.rnn = torch.nn.RNN(input_size=self.input_size,hidden_size=self.hidden_size,num_layers=num_layers)def forward(self, input):hidden = torch.zeros(self.num_layers,self.batch_size,self.hidden_size)  # (numLayers, batchSize, hiddenSize)out, hidden_last = self.rnn(input, hidden)  # out:(seqLen, batchSize, hiddenSize), hidden_last:最后一个hiddenreturn out.view(-1, self.hidden_size)  # (seqLen×batchSize, hiddenSize)net = Model(input_size, hidden_size, batch_size, num_layers)criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)for epoch in range(15):optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()idx = torch.argmax(outputs, dim=1)print('Predicted string: ', ''.join([idx2char[i.item()] for i in idx]), end='')print(', Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))

3.RNN_Embedding

import torch# parameters
num_class = 4  # 引入线性层,不用不必要求一个输入就有一个输出,可以多个
input_size = 4
hidden_size = 8
embedding_size = 10
num_layers = 2
batch_size = 1
seq_len = 5idx2char = ['e', 'h', 'l', 'o']
x_data = [[1, 0, 2, 2, 3]]  # (batch:1, seq_len:5)
y_data = [3, 1, 2, 3, 2]  # (batch * seq_len)
inputs = torch.LongTensor(x_data)
labels = torch.LongTensor(y_data)class Model(torch.nn.Module):def __init__(self):super(Model, self).__init__()self.emb = torch.nn.Embedding(input_size, embedding_size)self.rnn = torch.nn.RNN(input_size=embedding_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True)# batchSize在第一位: (batchSize:一共几个句子, seqLen:每个句子有几个单词, inputSize:每个单词有多少特征)self.fc = torch.nn.Linear(hidden_size, num_class)def forward(self, x):hidden = torch.zeros(num_layers, x.size(0), hidden_size)x = self.emb(x)  # (batch, seqLen, embeddingSize), 输入数据x首先经过嵌入层,将字符索引转换为向量x, _ = self.rnn(x, hidden)x = self.fc(x)return x.view(-1, num_class)net = Model()criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.05)for epoch in range(15):optimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()idx = torch.argmax(outputs, dim=1)print('Predicted string: ', ''.join([idx2char[i.item()] for i in idx]), end='')print(', Epoch [%d/15] loss = %.3f' % (epoch + 1, loss.item()))

相关文章:

【深度学习】RNN的简单实现

目录 1.RNNCell 2.RNN 3.RNN_Embedding 1.RNNCell import torchinput_size 4 hidden_size 4 batch_size 1idx2char [e, h, l, o] x_data [1, 0, 2, 2, 3] # 输入:hello y_data [3, 1, 2, 3, 2] # 期待:ohlol# 独热向量 one_hot_lookup [[1, …...

每次请求时,检查 JWT Token的有效期并决定是否需要刷新

为了在每次请求时检查 access_token 的有效期,并在过期时自动刷新,可以通过以下步骤实现: 1. 解析 JWT Token 获取过期时间 JWT token 的有效期是编码在 token 本身的,你可以通过解析 token 来获取它的到期时间。JWT token 是由…...

AI大模型开发架构设计(13)——LLM大模型的向量数据库应用实战

文章目录 LLM大模型的向量数据库应用实战1 大模型的局限性大模型的4点局限性大模型的4点局限性的改进实践方法 2 向量数据库使用场景以及改建大模型向量数据库向量数据库选型知识库文档检索增强(Retrieval Augmented Generation) 3 向量数据库应用技术架构剖析向量数据库应用技…...

WPF中Grid、StackPanel、Canvas、WrapPanel常用属性

Grid常用属性 Grid 控件在 WPF 中非常强大,它提供了多种属性来定义行和列的布局。以下是一些常用的 Grid 属性: RowDefinitions 和 ColumnDefinitions: Grid 控件使用 RowDefinitions 和 ColumnDefinitions 来定义行和列的集合。每个 RowDef…...

【芙丽芳丝净润洗面霜和雅漾舒护活泉喷雾

1. 洁面产品: - 芙丽芳丝净润洗面霜:氨基酸洗面奶的经典产品,成分温和,不含酒精、香料等刺激性成分。泡沫丰富细腻,能够有效清洁皮肤的同时,不会过度剥夺皮肤的油脂,洗后皮肤不紧绷,…...

ubuntu更新Cmake

CMake 先验知识创建软链接如何删除符号链接如何找出失效链接并将其删除PATH 优先级查看当前CMake命令的位置 高版本 CMake 安装参考 先验知识 创建软链接 ln -s <path to the file/folder to be linked> <the path of the link to be created>ln 是链接命令&…...

CMOS晶体管的串联与并联

CMOS晶体管的串联与并联 前言 对于mos管的串联和并联&#xff0c;一直没有整明白&#xff0c;特别是设计到EDA软件中&#xff0c;关于MOS的M和F参数&#xff0c;就更困惑了&#xff0c;今天看了许多资料以及在EDA软件上验证了电路结构与版图的对应关系&#xff0c;总算有点收…...

从IT高管到看门大爷:53岁我的职场华丽转身

该文讲述了一位1971年出生的男士&#xff0c;在53岁时因日企撤资而失业。他曾是IT技术员&#xff0c;后晋升为IT高管兼工会主席&#xff0c;但失业后数百份简历石沉大海&#xff0c;面试也因年龄被取消。他意识到年龄是求职的障碍&#xff0c;开始调整心态&#xff0c;降低期望…...

Redis入门到精通(三):入门Redis看这一篇就够了

文章目录 Redis分布式锁的实现原理Redis实现分布式锁如何合理的控制锁的有效时常&#xff1f;**redisson实现的分布式锁**redisson实现的如何保证主从一致性 Redis的集群方案1.主从复制主从数据的同步原理全量同步增量同步 2.哨兵模式Redis的集群脑裂是什么&#xff1f;3.分片集…...

IP基本原理

IP的定义 当前唯一的网络层协议标准定义数据网络层的封装方式、编址方法 MTU 最大传输单元接口收发数据支持的单个包的最大长度不同二层链路类型的接口的MTU不一致。以太网接口默认MTU1500Byte。PPPoE接口默认MTU1480Byte。 IP头部封装格式 IP 头部长度不固定&#xff0c;2…...

数据分析题面试题系列2

一.如何估算星巴克一天的营业额 a.需求澄清&#xff1a;区域&#xff1f;节假日&#xff1f;产品范围&#xff1f; b.收入销售杯数*单价&#xff08;营业时间*每小时产能*每小时产能利用率&#xff09;*平均单价 Hypo该星巴克门店的营业时间为12小时&#xff08;取整&#x…...

uniapp 单表、多级动态表单添加validateFunction自定义规则

uniapp 多级动态表单添加自定义规则 在uniapp制作小程序时&#xff0c;当涉及到需要设置validateFunction的校验规则时。可能遇到的问题 1、validateFunction不生效&#xff0c;没有触发 2、多层级表单怎么添加validateFunction自定义校验规则 本文将以单表单校验和多表单校…...

FPGA高端图像处理培训第一期,提供工程源码+视频教程+FPGA开发板

目录 1、FPGA图像处理培训现状分析2、本FPGA图像处理培训优势亮点架构全起点高实用性强项目应用级别细节恐怖工程源码清晰 3、本FPGA图像处理培训内容介绍图像处理基本框架图像前处理框架图像中处理框架图像前中处理框架图像后处理框架图像中后处理框架图像处理仿真框架视频教程…...

顺序表的实现(数据结构)——C语言

目录 1.结构与概念 2.分类 3 动态顺序表的实现 SeqList.h SeqList.c 创建SLInit&#xff1a; 尾插SLPushBack以及SLCheak&#xff08;检查空间是否足够&#xff09;&#xff1a; 头插SLPushFront&#xff1a; 尾删SLPopBack 头删SLPopFront 查找指定元素SLFind 指定…...

【VUE】Vue中 computed计算属性和watch侦听器的区别

核心功能不同 computed 是一个计算属性&#xff0c;其核心功能是基于已有的数据属性计算得出新的属性值。当某个依赖的数据发生变化时&#xff0c;computed 会自动重新计算并更新自己的值。因此&#xff0c;可以将 computed 看做是一种“派生状态”。 watch 是一个观察者函数&…...

linux线程 | 同步与互斥 | 深度学习与理解同步

前言&#xff1a;本节内容主要讲解linux下的同步问题。 同步问题是保证数据安全的情况下&#xff0c;让我们的线程访问具有一定的顺序性。 线程安全就规定了它必须是在加锁的场景下的&#xff01;&#xff01;那么&#xff0c; 具体什么是同步问题&#xff0c; 我们加下来看看吧…...

Tkinter Frame布局笔记--做一个简易的计算器

#encodingutf-8 import tkinter import re import tkinter.messagebox import tkinter.simpledialog import sys import os def get_resources_path(relative_path):if getattr(sys,frozen, False):base_pathsys._MEIPASS#获取临时文件else:base_pathos.path.dirname(".&q…...

算法专题八: 链表

目录 链表1. 链表的常用技巧和操作总结2. 两数相加3. 两两交换链表中的节点4. 重排链表5. 合并K个升序链表6. K个一组翻转链表 链表 1. 链表的常用技巧和操作总结 常用技巧 画图!!! 更加直观形象, 便于我们理解引入虚拟头节点, 方便我们对链表的操作, 减少我们对边界情况的考…...

MySQL中关于NULL值的六大坑!你被坑过吗?

NULL值是我们在开发过程中的老朋友了&#xff0c;但是这个老朋友在MySQL中有很多坑&#xff0c;我通过这篇文章来总结分享一下&#xff0c;欢迎大家在评论区分享你的看法和踩坑经历。 1、NULL不等于NULL 在MySQL中&#xff0c;执行以下SQL会返回NULL 假如t表有以下数据&#…...

学生学习动机测试:激发潜能,引领未来

学习动机、学习兴趣和学习目标制定是影响学生学习成效的三个关键因素。通过对学生学习动机的测试,我们可以深入了解学生的学习状态,进而采取针对性的措施,激发他们的学习潜能,引导他们走向更加光明的未来。本文将从学习动机、学习兴趣和学习目标制定三个方面,详细探讨学生…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

网络编程(UDP编程)

思维导图 UDP基础编程&#xff08;单播&#xff09; 1.流程图 服务器&#xff1a;短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...