当前位置: 首页 > news >正文

VIT:论文关键点解读与常见疑问

VIT贡献点:

1. 首次将 Transformer 应用于图像识别任务

  • 核心贡献:ViT 论文的最大贡献是提出将原本用于自然语言处理(NLP)的 Transformer 架构成功应用于图像任务。传统的计算机视觉模型主要依赖卷积神经网络(CNN),而 ViT 证明了 Transformer 模型也可以在图像分类任务上取得优异的性能,特别是在大规模数据集上。
  • 意义:这打破了人们对 CNN 在图像处理领域的长期垄断,展示了 Transformer 模型的泛用性,使其不仅在 NLP 中表现出色,也能胜任视觉任务。

2. 提出图像分块(Image Patch Embedding)的新方法

  • 核心贡献:ViT 提出了一种新颖的将图像处理成小块的方法。具体来说,ViT 将输入图像分成固定大小(如 16x16 像素)的图像块(patch),每个图像块被展平为一个向量,然后作为 Transformer 的输入。每个图像块相当于一个 “token”,类似于 NLP 中的单词。
  • 意义:这种图像分块的方式消除了卷积操作,直接将图像作为输入序列处理,并通过自注意力机制建模图像块之间的关系,从而提升了模型对全局信息的捕捉能力。相比 CNN 局部卷积核的限制,Transformer 的全局自注意力可以处理更远的依赖关系。

3. 展示了在大规模数据集上训练 ViT 的潜力

  • 核心贡献:ViT 展示了 Transformer 架构在计算机视觉中能够取得优异性能的前提是使用大规模数据集进行训练。在 ImageNet-1k 等较小数据集上,ViT 的表现不如传统 CNN,如 ResNet;但在更大规模的数据集(如 ImageNet-21k 和 JFT-300M)上,ViT 显示了极强的性能。
  • 意义:这表明 Transformer 架构对大规模数据集的依赖性较强,但一旦有充足的数据,Transformer 可以超越 CNN。ViT 的成功也推动了计算机视觉领域更多地使用大规模数据集和预训练方法。

4. 减少对图像处理领域特有的归纳偏置的依赖

  • 核心贡献:传统的 CNN 模型依赖卷积操作,这种操作带有很强的图像领域的归纳偏置(如局部感受野、平移不变性等)。ViT 则不同,它并没有明确设计图像领域特有的归纳偏置,而是依靠 Transformer 的自注意力机制来学习图像块之间的关系。
  • 意义:减少归纳偏置使 ViT 更加通用,它不仅能处理图像任务,也能够适用于其他视觉任务,而不需要根据任务定制模型的设计。ViT 的通用性更符合通用人工智能的发展方向。

5. ViT 在性能和计算效率上的权衡

  • 核心贡献:虽然 ViT 的性能在大规模数据集上表现出色,但其计算复杂度和资源消耗也相对较高。ViT 论文详细分析了模型在不同规模数据集和不同大小的输入图像上的表现,探讨了模型大小、训练时间、数据规模等因素的权衡,并展示了通过增加数据规模或模型规模,Transformer 模型可以进一步提高性能。
  • 意义:这为未来的研究者提供了重要的指导,尤其是在大模型的训练和应用时如何平衡性能和计算资源。

6. 探索了与卷积神经网络 (CNN) 的对比

  • 核心贡献:ViT 论文详细比较了 Transformer 与卷积神经网络(CNN)在图像处理上的优劣。它展示了 Transformer 不需要卷积层的平移不变性等先验信息,依赖自注意力机制可以捕获更长距离的依赖关系,弥补 CNN 只能处理局部特征的不足。
  • 意义:通过对比,ViT 证明了 Transformer 模型不仅可以替代 CNN,还可以在合适的数据和计算资源下超越 CNN。这为视觉任务开辟了新方向,即视觉任务不再仅限于卷积网络,Transformer 可以成为主力模型。

7. 展现了 Transformer 在多任务学习中的潜力

  • 核心贡献:ViT 展示了 Transformer 模型在处理多个视觉任务上的潜力,ViT 不仅可以用于图像分类,还能够扩展到其他视觉任务,如目标检测、图像分割等。其架构的灵活性和通用性,使其成为更广泛的视觉任务解决方案。
  • 意义:ViT 推动了研究人员将 Transformer 应用于其他视觉任务的探索,证明了其在计算机视觉领域的广泛应用潜力,甚至激发了跨领域的多任务学习研究。

关键问题:

1 Patch怎么转化为向量的?

利用卷积,这个块上总的像素个数就是卷积这一块patch的卷积核个数。

2 转化后的这么多向量是如何用来做分类任务的?

借用BERT中的CLS思想,因为在transformer中,自注意力机制是可以是各个向量看到其他任意一个向量的,假设有196个patch,CLS就取与他们相同的长度,变成197个向量,CLS,就可以同时学到其他196个向量的信息,所以CLS身上负载了整个图片信息,最后经过MLP层进行降维就可以用来做分类任务了。

相关文章:

VIT:论文关键点解读与常见疑问

VIT贡献点: 1. 首次将 Transformer 应用于图像识别任务 核心贡献:ViT 论文的最大贡献是提出将原本用于自然语言处理(NLP)的 Transformer 架构成功应用于图像任务。传统的计算机视觉模型主要依赖卷积神经网络(CNN&…...

ArcGIS无插件加载(无偏移)在线天地图高清影像与街道地图指南

在地理信息系统(GIS)的应用中,加载高清影像与街道地图对于地图制图、影像查阅、空间数据分析等工作至关重要。天地图作为官方出品的地图服务,以其标准的数据、较快的影像更新速度等特点受到广泛欢迎。以下是如何在ArcGIS中无插件加…...

工业相机选型(自用笔记)

可参考链接: 相机和镜头选型需要注意哪些问题_靶面尺寸-CSDN博客 工业相机选型方法_ccd工业相机选型步骤-CSDN博客 1、相机 1.1 传感器类型(CCD/CMOS) CCD相机: 1)目标是运动的则优先考虑。 2)需要高质量图像,如进行…...

【网安笔记】4种拒绝服务攻击

目录 一、SYN Flood 攻击 二、UDP Flood 攻击 三、ICMP Flood 攻击 四、HTTP Flood 攻击 拒绝服务攻击(Denial of Service attack,简称 DoS 攻击)是指攻击者通过向目标服务器或网络发送大量的请求,使其资源耗尽,无…...

WPF 的组件数据绑定详解

Windows Presentation Foundation(WPF)是微软推出的一种用于构建 Windows 应用程序的 UI 框架。WPF 提供了强大的数据绑定功能,能够轻松地将 UI 控件与数据源连接,从而实现富用户体验,分离前端设计和业务逻辑。本文将详…...

房子,它或许是沃土

刚成家,来客时,它是客房 成家后,没小孩,它是书房 有小孩,未分房,它暂且是书房 孩子大些,它是孩子们埋下梦想种子,生根发芽的地方...

【Golang】Go语言http编程底层逻辑实现原理与实战

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

SOLIDWORKS参数化软件

在产品设计和工程领域,参数化设计是一种革命性的方法,它允许设计者通过定义一系列规则和关系来创建和修改模型。参数化设计的核心在于将设计过程分解为一系列可调整的参数,如尺寸、形状、材料属性等,这些参数之间通过数学关系相互…...

上位机开发常用技术 C# Task 线程 开始,暂停,继续,停止

上位机开发中一定会用到的技术就是 设备的线程开始运行执行生产流程,在生产过程中会有要打开安全门或暂停设备动作,人为去排除设备小问题的时就要用到暂停功能,问题排除后设备继续运行,生产完成后设备停止。 这些操作是上位机开发…...

MySQL 密码忘记了怎么办?

在使用 MySQL 的过程中,有时候我们可能会忘记密码。别担心,本文将详细介绍在 Windows 系统下如何重新设置 MySQL 密码。 一、停止 MySQL 服务 打开“服务”窗口,可以通过在 Windows 搜索栏中输入“服务”来找到并打开它。在服务列表中找到“…...

Java中常见的自带数据结构类

目录 一、ArrayList(动态数组) 特性 常用方法 二、LinkedList(双向链表) 特性 常用方法 三、ArrayDeque(双端队列) 特性 常用方法 四、HashMap(哈希表) 特性 常用方法 五、TreeMap&…...

数据结构——链表,哈希表

文章目录 链表python实现双向链表复杂度分析 哈希表(散列表)python实现哈希表哈希表的应用 链表 python实现 class Node:def __init__(self, item):self.item itemself.next Nonedef head_create_linklist(li):head Node(li[0])for element in li[1…...

如何使用Python对Excel、CSV文件完成数据清洗与预处理?

在数据分析和机器学习项目中,数据清洗与预处理是不可或缺的重要环节。 现实世界中的数据往往是不完整、不一致且含有噪声的,这些问题会严重影响数据分析的质量和机器学习模型的性能。 Python作为一门强大的编程语言,提供了多种库和工具来帮…...

第8篇:网络安全基础

目录 引言 8.1 网络安全的基本概念 8.2 网络威胁与攻击类型 8.3 密码学的基本思想与加密算法 8.4 消息认证与数字签名 8.5 网络安全技术与协议 8.6 总结 第8篇:网络安全基础 引言 在现代信息社会中,计算机网络无处不在,从互联网到局…...

Flutter 中的 PopScope 小部件:全面指南

Flutter 中的 PopScope 小部件:全面指南 在 Flutter 应用开发中,导航和路由管理是构建复杂应用时必须面对的挑战之一。PopScope 小部件是 Flutter 2.0 版本引入的一个新功能,它提供了一种更灵活的方式来控制页面的弹出和返回行为。本文将带你…...

视频剪辑的未来

技术发展推动4: 人工智能与自动化辅助:人工智能在视频剪辑中的应用将不断深化。例如,智能剪辑软件能够自动分析视频素材的内容、情感和节奏,快速生成初步的剪辑版本,剪辑师在此基础上进行进一步的优化和调整&#xff0…...

通过PHP与API的结合,开启电商数据集成的新篇章

在数字化转型的浪潮中,电子商务数据的集成对于企业来说变得越来越重要。无论是在线零售商还是品牌商,都需要实时访问商品数据以优化库存管理、制定定价策略、提升客户体验。PHP,作为服务端脚本语言的佼佼者,为开发者提供了强大的工…...

使用 CDN 后 Apache 的日志记录客户真实 IP

经常搭建网站服务器的都知道,在给站点使用了 CDN 后 Web 应用的日志记录里就会只记录 CDN 节点 IP 了,这就没法看到真实客户请求 IP,对于日志分析、运维日常维护来说就有点儿麻烦了,今天明月结合在五洛云服务器上搭建的Apache环境…...

ORACLE 19C安装 RAC报错

1. 问题描述 在Oracle 19C RAC的安装过程中,使用克隆方式在两个节点上部署集群。当第一个节点配置好基础服务后,关机并克隆节点。当尝试在第二个节点上通过页面进行RAC安装时,出现以下错误: [INS-32070] Could not remove the n…...

省心英语 3.9.9| 资源最全面的英语学习App

省心英语是一款资源全面的英语学习软件,完全免费且无广告,内含丰富的词库和范文、中小学、四六级、考研、专四专八、雅思托福、新概念等所有阶段的学习内容。软件支持练听力、背单词、阅读理解等功能,覆盖了听说读写全方位学习。听力部分包含…...

ruoyi框架动态切换数据库

需求背景 最近需要一个小demo,项目中需要同时连接sqlserver和mysql数据库。 操作教程 1、pom.xml -- 修改common/pom.xml<!-- 动态数据源 --> <dependency><groupId>com.baomidou</groupId><artifactId>dynamic-datasource-spring-boot-star…...

iba Data Export 导出面板选项

时间线选择真实时间“Absolute date / time” 时间间隔选择0.5Sec.&#xff08;最小为0.01Sec.&#xff09; 右侧数据根据需要选择...

过滤器Filter的介绍和使用

1.简介 在 Java Web 开发中&#xff0c;Filter 是一个非常重要的组件&#xff0c;用于在请求到达 Servlet 之前或响应返回客户端之前对请求和响应进行预处理或后处理。Filter 可以用来实现多种功能&#xff0c;如日志记录、权限检查、编码转换、请求头修改等。就好比机场的层层…...

JMeter之mqtt-jmeter 插件介绍

前言 mqtt-jmeter插件是JMeter中的一个第三方插件&#xff0c;用于支持MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;协议的性能测试。MQTT是一种轻量级的发布/订阅消息传输协议&#xff0c;广泛应用于物联网和传感器网络中。 一、安装插件 mqtt-jmeter项目…...

Nacos2.3.2在ubuntu中的部署

Nacos2.3.2 在ubuntu下的部署 下载地址 发布历史 | Nacos 官网 https://download.nacos.io/nacos-server/nacos-server-2.3.2.zip 修改 application.properties文件 开启鉴权 ### 开启鉴权功能 nacos.core.auth.caching.enabledtrue ### The auth system to use, current…...

Xilinx远程固件升级(一)——QuickBoot方案

Xilinx 7系FPGA远程更新方案——QuickBoot方式远程更新bit 一、远程更新背景和架构 对于非ZYNQ系列的常规FPGA来说&#xff0c;对于bit的更新一般使用JTAG进行烧录。而作为商用产品&#xff0c;想要进行OTA升级时&#xff0c;使用JTAG的升级方式显然不适合&#xff0c;因此&a…...

O(1)调度算法与CFS

目录 引言 linux内核的O&#xff08;1&#xff09;进程调度算法介绍 主要特点 工作原理 优点 缺点 运行队列 活动队列 过期队列 active指针和expired指针 O(1)调度器&#xff0c;两个队列的机制 两个队列的机制如下&#xff1a; 这个算法后期被CFS替代 CFS 工作原…...

SpringBoot——静态资源访问的四种方式

1.默认的静态资源目录 /static /public /resources /META-INF/resources 动态资源目录&#xff1a;/templates 2.resources静态资源目录图片存放 3. 静态资源访问 3.1.通过路径访问静态资源 http://localhost:8080/a.jpg http://localhost:8080/b.jpg …...

WPF中的Style如何使用

在 WPF 中&#xff0c;Style 是一个非常重要的概念&#xff0c;它用于定义控件的默认外观和行为。以下是如何使用 Style 的一些基本步骤和示例&#xff1a; 1. 定义 Style 资源 通常在 XAML 的资源部分&#xff08;ResourceDictionary&#xff09;中定义样式。 2. 指定 Targ…...

数据分析案例-欺诈性电子商务交易数据集可视化分析

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…...