当前位置: 首页 > news >正文

pytorh学习笔记——cifar10(三)模仿VGGNet创建卷积网络

        VGG16是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络模型。

        VGGNet 探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了 16~19 层深的卷积神经网络,同时拓展性又很强,迁移到其它图片数据上的泛化性也非常好。到目前为止,VGG 仍然被用来提取图像特征。

        对VGGNet的介绍,这篇文章很优秀:大话CNN经典模型:VGGNet - OSCHINA - 中文开源技术交流社区

        部分摘抄:

        VGGNet的网络结构:
        下图是来自论文《Very Deep Convolutional Networks for Large-Scale Image Recognition》(基于甚深层卷积网络的大规模图像识别)的 VGG 网络结构,正是在这篇论文中提出了 VGG,如下图:

        在这篇论文中分别使用了 A、A-LRN、B、C、D、E 这 6 种网络结构进行测试,这 6 种网络结构相似,都是由 5 层卷积层、3 层全连接层组成,其中区别在于每个卷积层的子层数量不同,从 A 至 E 依次增加(子层数量从 1 到 4),总的网络深度从 11 层到 19 层(添加的层以粗体显示),表格中的卷积层参数表示为 “conv〈感受野大小〉- 通道数〉”,例如 con3-128,表示使用 3x3 的卷积核,通道数为 128。为了简洁起见,在表格中不显示 ReLU 激活功能。
其中,网络结构 D 就是著名的 VGG16,网络结构 E 就是著名的 VGG19。

        以网络结构 D(VGG16)为例,介绍其处理过程如下,请对比上面的表格和下方这张图,留意图中的数字变化,有助于理解 VGG16 的处理过程:

1 、输入 224x224x3 的图片,经 64 个 3x3 的卷积核作两次卷积 + ReLU,卷积后的尺寸变为 224x224x64
2、作 max pooling(最大化池化),池化单元尺寸为 2x2(效果为图像尺寸减半),池化后的尺寸变为 112x112x64
3、经 128 个 3x3 的卷积核作两次卷积 + ReLU,尺寸变为 112x112x128
4、作 2x2 的 max pooling 池化,尺寸变为 56x56x128
5、经 256 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 56x56x256
6、作 2x2 的 max pooling 池化,尺寸变为 28x28x256
7、经 512 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 28x28x512
8、作 2x2 的 max pooling 池化,尺寸变为 14x14x512
9、经 512 个 3x3 的卷积核作三次卷积 + ReLU,尺寸变为 14x14x512
10、作 2x2 的 max pooling 池化,尺寸变为 7x7x512
11、与两层 1x1x4096,一层 1x1x1000 进行全连接 + ReLU(共三层)
12、通过 softmax 输出 1000 个预测结果

其简化图如下(以 VGG16 为例): 

代码实现:新建vggNet.py

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VGGbase(nn.Module):def __init__(self, num_classes=10):super(VGGbase, self).__init__()self.conv1 = nn.Sequential(  # 定义第1个卷积层# Sequential 是一个容器,它可以包含一系列的神经网络层(layers),并按顺序执行它们。具体来说,# nn.Sequential( 允许您将多个层定义为一个整体,这个整体可以被视为一个单独的层。# 当您向神经网络传递数据时,数据会依次通过 Sequential 中定义的每一层。# 这种方式简化了网络结构的定义和理解,尤其是在构建较为复杂的网络时。nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),  # 输入通道为3,输出通道为64,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(64),  # 批量归一化# nn.BatchNorm2d 表示对二维输入进行批量归一化,参数 64 通常代表输入特征的通道数。批量归一化的作用是在神经网络训练过程中,对每一批次的数据进行归一化处理,# 使得数据的分布更加稳定,有助于加速训练过程、提高模型的泛化能力。nn.ReLU()  # 激活函数)self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第一层卷积后,图像的尺寸为 16x16,通道数为64self.conv2_1 = nn.Sequential(  # 定义第2个卷积层的第一次卷积nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(128),  # 批量归一化nn.ReLU()  # 激活函数)self.conv2_2 = nn.Sequential(  # 定义第2个卷积层的第二次卷积nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(128),  # 批量归一化nn.ReLU()  # 激活函数)self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第二层卷积后,图像的尺寸为 8x8,通道数为128self.conv3_1 = nn.Sequential(  # 定义第3个卷积层的第一次卷积nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),  # 输入通道为64,输出通道为128,卷积核大小为3x3,步长为1,填充为1nn.BatchNorm2d(256),  # 批量归一化nn.ReLU()  # 激活函数)self.conv3_2 = nn.Sequential(  # 定义第3个卷积层的第二次卷积nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(256),  # 批量归一化nn.ReLU()  # 激活函数)self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)# 经过第三层卷积后,图像的尺寸为 4x4,通道数为256self.conv4_1 = nn.Sequential(  # 定义第4个卷积层的第一次卷积nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(512),  # 批量归一化nn.ReLU()  # 激活函数)self.conv4_2 = nn.Sequential(  # 定义第4个卷积层的第二次卷积nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1),nn.BatchNorm2d(512),  # 批量归一化nn.ReLU()  # 激活函数)self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)  # 最大池化,池化核大小为2x2,步长为2# 经过第四层卷积后,图像的尺寸为 2x2,通道数为512self.fc = nn.Linear(512 * 4, num_classes)  # 全连接层,输入为512*4,输出为10def forward(self, x):   # 定义前向传播过程batch_size = x.size(0)  # 获取输入的batch_sizex = self.conv1(x)  # 第1个卷积层x = self.pool1(x)  # 第1个池化层x = self.conv2_1(x)  # 第2个卷积层x = self.conv2_2(x)  # 第2个卷积层x = self.pool2(x)  # 第2个池化层x = self.conv3_1(x)  # 第3个卷积层x = self.conv3_2(x)  # 第3个卷积层x = self.pool3(x)  # 第3个池化层x = self.conv4_1(x)  # 第4个卷积层x = self.conv4_2(x)  # 第4个卷积层x = self.pool4(x)  # 第4个池化层x = x.view(batch_size, -1)  # 将图片展开成一行,-1表示自动计算这一维的大小x = self.fc(x)   # 全连接层output = F.log_softmax(x, dim=1)  # 对输出进行log_softmax处理return outputdef VGGNet():  # 定义网络结构的应用函数return VGGbase()

相关文章:

pytorh学习笔记——cifar10(三)模仿VGGNet创建卷积网络

VGG16是由牛津大学视觉几何组(Visual Geometry Group)提出的一种深度卷积神经网络模型。 VGGNet 探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了 16~19 层深的卷积神经网络,同时拓展性又很强,迁移到其它图片…...

题目:连续子序列

解题思路: 首先,不能使用暴力枚举,时间为O(n2),超时。以下为正确做法: 假设找到一段区间(其和>m),如上图黄色部分,那么该区间加上i后面的元素形成的新区间和都>m&a…...

深入解析:Nacos AP 模式的实现原理与应用场景

优质博文:IT-BLOG-CN 一、CAP 基础 ‌Nacos作为注册中心同时支持CP和AP模式。‌ Nacos通过不同的协议和机制来实现这两种模式,以满足不同的需求场景。 在Nacos中,默认情况下使用的是AP模式,通过Distro协议来实现。AP模式主要关…...

snmpnetstat使用说明

1.snmpnetstat介绍 snmpnetstat命令是用来查看snmp服务器的端口连接信息。 2.snmpnetstat安装 1.snmpnetstat安装 命令: yum -y install net-snmp net-snmp-utils [root@logstash ~]# yum -y install net-snmp net-snmp-utils Loaded plugins: fastestmirror Loading mi…...

linux线程 | 同步与互斥 | 互斥(下)

前言:本篇文章主要讲述linux线程的互斥的知识。 讲解流程为先讲解锁的工作原理, 再自己封装一下锁并且使用一下。 做完这些就要输出一堆理论性的东西, 但博主会总结两条结论!!最后就是讲一下死锁。 那么, 废…...

2024-10-17 问AI: [AI面试题] 讨论 AI 的挑战和局限性

文心一言 AI(人工智能)虽然取得了显著的进步,但仍面临多方面的挑战和局限性。以下是对AI挑战和局限性的详细讨论: 一、数据质量与可靠性 数据质量:AI系统依赖于高质量的数据进行训练和学习。如果数据质量低劣或包含…...

go基础(一)

包声明引入包函数变量语句&表达式注释 package main//包声明import "fmt"//引入包 //函数 func main() {/* 这是我的第一个简单的程序 */fmt.Println("Hello, World!") }基础语法 标记 go程序可以由多个标记组成,可以是关键字&#xff0…...

python忽略warnings 的方法

我在训练深度学习模型的时候一直出现这样的警告,但是不影响运行: UserWarning: Failed to load image Python extension: [WinError 127] 找不到指定的程序。 warn(f"Failed to load image Python extension: {e}") 要避免在 Python 程序运…...

2024年底蓝奏云最新可用API接口列表 支持优享版 无需手动抓取cookie

Lanzou Pro V1 接口列表 API状态版本路由获取文件与目录✅^1.0.1/v1/getFilesAndDirectories?url{}&page{}获取目录✅^1.0.0/v1/getDirectory?url{}获取文件✅^1.0.1/v1/getFiles?url{}&page{}搜索文件✅^1.0.0/v1/searchFile?url{}&wd{}依Id解析✅^1.0.2/v1/…...

Linux常用命令详细解析(含完整命令演示过程)

目录 1. 目录结构介绍 2. Linux命令基础 2.1 命令和命令行 2.2 格式 3. 常用命令 3.1 产看目录命令——ls 3.2 通配符 3.3 改变工作目录命令——cd 3.4 查看当前路径命令——pwd 3.5 创建新的目录命令——mkdir 3.6 创建文件目录命令——touch 3.7 查看…...

《使用Gin框架构建分布式应用》阅读笔记:p101-p107

《用Gin框架构建分布式应用》学习第7天,p101-p107总结,总计7页。 一、技术总结 1.StatusBadRequest vs StatusInternalServerError 写代码的时候有一个问题,什么时候使用 StatusBadRequest(400错误),什么时候使用 StatusIntern…...

014集——c#实现打开、另存对话框(CAD—C#二次开发入门)

如下图所示,运行后实现如下功能: 打开对话框,选择一个文件,并获取文件名变量。 打开另存对话框,输入路径和文件名,获取另存文件名变量。 部分代码如下: public static void Ofd(this Database…...

全面升级:亚马逊测评环境方案的最新趋势与实践

在亚马逊测评领域深耕多年,见证了无数环境方案的更迭与演变,每一次变化都体现了国人不畏艰难、勇于创新的精神。面对平台的政策调整,总能找到相应的对策。那么,当前是否存在一套相对稳定且高效的技术方案呢?答案是肯定…...

Java中的异步编程模型

1.什么是异步编程? 异步编程是一种编程模式,允许程序在等待某些操作(例如文件I/O或网络请求)完成时,不必停下来等待,而是继续执行其他任务。当异步操作完成时,回调函数或任务调度器会处理结果&…...

opencv 按位操作

opencv位运算说明 按位与,按位或,按位非,按位异或 在 OpenCV 中,按位操作函数的接口一般包括两个或多个图像数组(矩阵)作为输入,常常还会有一个可选的掩码参数。下面我列出每个函数的具体接口…...

【Bug】STM32串口空闲中断接收不定长数据异常

Bug 使用标准库配置STM32F103C8T6的串口1开启接收中断和空闲中断,通过空闲中断来判断数据发送是否结束,收到数据后切换板载LED灯所接引脚电平,发现LED出现三种情况,熄灭、微亮、正常亮,但是LED灯所接的GPIO引脚为PC13…...

使用Radzen Blazor组件库开发的基于ABP框架炫酷UI主题

一、项目简介 使用过ABP框架的童鞋应该知道它也自带了一款免费的Blazor UI主题,它的页面是长这样的: 个人感觉不太美观,于是网上搜了很多Blazor开源组件库,发现有一款样式非常不错的组件库,名叫:Radzen&am…...

Java入门4——输入输出+实用的函数

在本篇博客,采用代码解释的方法,帮助大家熟悉Java的语法 一、输入和输出 在Java当中,我们一般有这样输入输出: import java.util.Scanner;public class javaSchool {public static void main(String[] args) {Scanner scanner …...

《当尼采哭泣》

这是一个相互救赎的故事。故事铺垫比较冗长,看到一半的时候一度看不下去。直到看到最后两章才最终感觉值得一看。很多表层现象,就像露出水面的冰山。解决表面的问题,需要深挖冰山水下的部分。一个人碰到的最难解决的问题不在外部,…...

TOMCAT Using CATALINA——OPTS,闪退解决方法(两种)

【Java实践】安装tomcat启动startup.bat出现闪退问题_安装tomcat点击startup闪退-CSDN博客...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性: 隐藏字段的实现细节 提供对字段的受控访问 访问控制: 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性: 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑: 可以…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...