Android 图片相识度比较(pHash)
概述
在 Android 中,要比对两张 Bitmap 图片的相似度,常见的方法有基于像素差异、直方图比较、或者使用一些更高级的算法如 SSIM(结构相似性)和感知哈希(pHash)。
1. 基于像素的差异比较
可以逐像素比较两张 Bitmap,计算它们之间的差异。以下是一个简单的逐像素比较的例子:
public static double compareBitmaps(Bitmap bitmap1, Bitmap bitmap2) {if (bitmap1.getWidth() != bitmap2.getWidth() || bitmap1.getHeight() != bitmap2.getHeight()) {throw new IllegalArgumentException("Bitmap sizes are different!");}int width = bitmap1.getWidth();int height = bitmap1.getHeight();long diff = 0;for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {int pixel1 = bitmap1.getPixel(x, y);int pixel2 = bitmap2.getPixel(x, y);int r1 = Color.red(pixel1);int g1 = Color.green(pixel1);int b1 = Color.blue(pixel1);int r2 = Color.red(pixel2);int g2 = Color.green(pixel2);int b2 = Color.blue(pixel2);// 计算 RGB 差异diff += Math.abs(r1 - r2);diff += Math.abs(g1 - g2);diff += Math.abs(b1 - b2);}}// 最大可能差异double maxDiff = 3L * 255 * width * height;// 返回 0 到 1 的值,越小表示相似度越高return (double) diff / maxDiff;
}
这段代码计算两张图片的 RGB 差异,返回的结果范围在 0-1 之间,数值越接近 0 表示图片越相似。
2. 基于直方图的比较
通过比较两张图片的颜色直方图来评估相似度。直方图可以捕捉图像的颜色分布,而不关心具体像素位置。
public static double compareHistograms(Bitmap bitmap1, Bitmap bitmap2) {int[] histogram1 = new int[256];int[] histogram2 = new int[256];// 计算两张图的灰度直方图for (int y = 0; y < bitmap1.getHeight(); y++) {for (int x = 0; x < bitmap1.getWidth(); x++) {int pixel1 = bitmap1.getPixel(x, y);int gray1 = (Color.red(pixel1) + Color.green(pixel1) + Color.blue(pixel1)) / 3;histogram1[gray1]++;int pixel2 = bitmap2.getPixel(x, y);int gray2 = (Color.red(pixel2) + Color.green(pixel2) + Color.blue(pixel2)) / 3;histogram2[gray2]++;}}// 计算直方图的差异double diff = 0;for (int i = 0; i < 256; i++) {diff += Math.abs(histogram1[i] - histogram2[i]);}return diff / (bitmap1.getWidth() * bitmap1.getHeight());
}
3. 使用 SSIM(结构相似性)
SSIM 是一种用来衡量两张图片结构相似性的算法,它比简单的像素差异或直方图比较更准确。Android SDK 没有内置的 SSIM 方法,但可以引入第三方库或者自己实现。SSIM 主要关注三方面:亮度、对比度和结构。
4. 感知哈希(pHash)
pHash 是一种图像哈希技术,它可以生成图片的“指纹”,然后比较两个哈希值的相似性。与传统哈希方法不同,pHash 对于图像的细微改变(例如缩放、旋转)不敏感。
可以通过第三方库实现 pHash,比如 ImageHash 库,或者自己实现基于 DCT(离散余弦变换)的算法。
// 引入第三方库 ImageHash 进行哈希比较
String hash1 = ImageHash.hash(bitmap1);
String hash2 = ImageHash.hash(bitmap2);int similarity = ImageHash.compare(hash1, hash2);
一般来说:
- 对于简单的图像比较,基于像素差异的方式即可。
- 如果要忽略图片的细微变动,直方图或感知哈希是更合适的选择。
- SSIM 适用于对图像结构有更高要求的场景。
实现
图像比较的算法应用相当广泛, 本文基于感知哈希算法, 用于识别视频帧图像的左右两部分的相似度, 从而判断视频是否是一个左右眼的VR视频格式, 本文采用 感知哈希(pHash) 算法, 它非常适合处理具有细微变化的图像,如裁剪、缩放、亮度变化等。
感知哈希(pHash)是一种用于衡量图像相似度的算法,它通过将图像转换为频域信息,提取其视觉特征来生成一个哈希值。pHash 具有鲁棒性,能够忽略图像的小幅度变动、旋转和缩放等影响。下面是 pHash 算法的实现步骤及其原理。
pHash 算法的实现步骤
-
转换为灰度图:将图片转换为灰度图像,以便降低复杂度,并去除颜色信息的影响。
-
缩小尺寸:将图像缩小到一个固定的尺寸(例如 32x32),目的是去除高频细节,保留图片的整体特征。这一步骤在后续的离散余弦变换(DCT)中很重要。
-
离散余弦变换(DCT):对缩小后的图像执行离散余弦变换,将图像从空间域转换到频率域。这种转换能提取图像的低频信息,忽略高频噪声。
-
截取低频部分:只保留 DCT 结果的左上角部分(例如 8x8 的矩阵),因为这部分包含图像的主要信息。
-
计算均值:计算截取的低频部分的均值。
-
生成哈希值:将 DCT 中每个像素值与均值进行比较,生成一个二进制序列。如果某个像素值大于均值,置 1,否则置 0。最终的哈希值是由这个二进制序列构成。
参考pHash 算法实现
import android.graphics.Bitmap;
import android.graphics.Color;
import java.util.Arrays;public class ImagePHash {// 默认使用 32x32 大小private static final int SIZE = 32;// DCT 截取的大小(例如 8x8)private static final int SMALLER_SIZE = 8;public String getHash(Bitmap img) {// 1. 转换为灰度图像Bitmap grayImg = toGrayscale(img);// 2. 缩小图片Bitmap smallImg = Bitmap.createScaledBitmap(grayImg, SIZE, SIZE, false);// 3. 转换为二维数组double[][] vals = new double[SIZE][SIZE];for (int x = 0; x < SIZE; x++) {for (int y = 0; y < SIZE; y++) {vals[x][y] = Color.red(smallImg.getPixel(x, y));}}// 4. 对图像执行离散余弦变换(DCT)double[][] dctVals = applyDCT(vals);// 5. 截取 DCT 左上角的 8x8 部分double[] dctLowFreq = new double[SMALLER_SIZE * SMALLER_SIZE];for (int x = 0; x < SMALLER_SIZE; x++) {for (int y = 0; y < SMALLER_SIZE; y++) {dctLowFreq[x * SMALLER_SIZE + y] = dctVals[x][y];}}// 6. 计算均值double avg = Arrays.stream(dctLowFreq).average().orElse(0.0);// 7. 生成哈希值StringBuilder hash = new StringBuilder();for (double value : dctLowFreq) {hash.append(value > avg ? "1" : "0");}return hash.toString();}// 转换为灰度图像private Bitmap toGrayscale(Bitmap img) {int width = img.getWidth();int height = img.getHeight();Bitmap grayscaleImg = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {int pixel = img.getPixel(x, y);int red = Color.red(pixel);int green = Color.green(pixel);int blue = Color.blue(pixel);int gray = (red + green + blue) / 3;int newPixel = Color.rgb(gray, gray, gray);grayscaleImg.setPixel(x, y, newPixel);}}return grayscaleImg;}// 执行离散余弦变换(DCT)private double[][] applyDCT(double[][] f) {int N = f.length;double[][] F = new double[N][N];for (int u = 0; u < N; u++) {for (int v = 0; v < N; v++) {double sum = 0.0;for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {sum += f[i][j] *Math.cos((2 * i + 1) * u * Math.PI / (2.0 * N)) *Math.cos((2 * j + 1) * v * Math.PI / (2.0 * N));}}double alphaU = (u == 0) ? Math.sqrt(1.0 / N) : Math.sqrt(2.0 / N);double alphaV = (v == 0) ? Math.sqrt(1.0 / N) : Math.sqrt(2.0 / N);F[u][v] = alphaU * alphaV * sum;}}return F;}// 比较两个哈希值,返回汉明距离(不同位数的个数)public int hammingDistance(String hash1, String hash2) {int distance = 0;for (int i = 0; i < hash1.length(); i++) {if (hash1.charAt(i) != hash2.charAt(i)) {distance++;}}return distance;}
}
对比效果如下(使用ListView 显示多张图片对比结果, 一帧视频图像从中间切割左右两部分, 分别显示在列表项的左右两侧, 中间的文字输出比较结果的汉明值, 值越小图像差异越小):


原始测试图片(从一个VR视频中截取出的视频帧):





代码分享:
test_img_diff.xml 布局
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent"android:layout_height="match_parent"android:id="@+id/rlRoot"><ListView android:id="@+id/lv"android:layout_width="match_parent"android:layout_height="match_parent"/>
</RelativeLayout>
ListView 的item 布局: item_img_diff.xml
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"android:layout_width="match_parent"android:layout_height="match_parent"><ImageView android:id="@+id/ivLeft"android:layout_width="128dp"android:layout_height="72dp"/><ImageView android:id="@+id/ivRight"android:layout_width="128dp"android:layout_height="72dp"android:layout_alignParentRight="true"/><TextView android:id="@+id/tvRes"android:layout_width="wrap_content"android:layout_height="wrap_content"android:layout_centerInParent="true"android:textSize="18sp"android:textColor="#FFFFFFFF"/>
</RelativeLayout>
主界面Activity: ImgDiffTester.java
public class ImgDiffTester extends Activity implements View.OnClickListener {final String TAG = "ImgDiffTester";ListView lv;ImgListAdapter adapter;@Overrideprotected void onCreate(@Nullable Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R.layout.test_img_diff);findViewById(R.id.rlRoot).setOnClickListener(this);lv = (ListView) findViewById(R.id.lv);adapter = new ImgListAdapter();lv.setAdapter(adapter);startCompare();}void startCompare(){new Thread(){@Overridepublic void run() {File[] fs = new File("/sdcard/Download/").listFiles(new FileFilter() {@Overridepublic boolean accept(File file) {return file.getName().endsWith(".png");}});for(File f : fs){Bitmap bm = BitmapFactory.decodeFile(f.getAbsolutePath());compareBitmapAndShow(bm);}lv.post(new Runnable() {@Overridepublic void run() {adapter.notifyDataSetChanged();}});}}.start();}void compareBitmapAndShow(Bitmap bm){if(bm != null && bm.getWidth() > 0 && bm.getHeight() > 0) {final Bitmap bm1 = BitmapUtils.clipBitmapWidthBounds(bm, new Rect(0, 0, bm.getWidth() / 2, bm.getHeight()));//bm1 = BitmapFactory.decodeFile("/sdcard/l.png");final Bitmap bm2 = BitmapUtils.clipBitmapWidthBounds(bm, new Rect(bm.getWidth() / 2, 0, bm.getWidth(), bm.getHeight()));//bm2 = BitmapFactory.decodeFile("/sdcard/r.png");try {Bitmap[] scaled = new Bitmap[2];//scaled[0] = Bitmap.createBitmap(pHash.DCT_LENGTH, pHash.DCT_LENGTH, Bitmap.Config.ARGB_8888);//scaled[1] = Bitmap.createBitmap(pHash.DCT_LENGTH, pHash.DCT_LENGTH, Bitmap.Config.ARGB_8888);//int cmp = pHash.compareBitmap(bm1, bm2, scaled, false);long st = SystemClock.uptimeMillis();final int cmp = ImagePHash.compareBitmap(bm1, bm2);long et = SystemClock.uptimeMillis();Log.d(TAG, "compare " + cmp + " spend " + (et - st) + " ms");Item item = new Item();item.l = bm1;item.r = bm2;item.res = "Result: " + cmp + ", spend " + (et - st) + " ms";adapter.items.add(item);} catch (Exception e) {throw new RuntimeException(e);}}}public static class ImagePHash {// 默认使用 32x32 大小private static final int SIZE = 32;// DCT 截取的大小(例如 8x8)private static final int SMALLER_SIZE = 8;public static int compareBitmap(Bitmap bm1, Bitmap bm2){String h1 = getHash(bm1);String h2 = getHash(bm2);return hammingDistance(h1, h2);}@SuppressLint("NewApi")public static String getHash(Bitmap img) {long st = SystemClock.uptimeMillis();// 1. 转换为灰度图像Bitmap grayImg = toGrayscale(img);// 2. 缩小图片Bitmap smallImg = Bitmap.createScaledBitmap(grayImg, SIZE, SIZE, false);// 3. 转换为二维数组double[][] vals = new double[SIZE][SIZE];for (int x = 0; x < SIZE; x++) {for (int y = 0; y < SIZE; y++) {vals[x][y] = Color.red(smallImg.getPixel(x, y));}}long ct1 = SystemClock.uptimeMillis();// 4. 对图像执行离散余弦变换(DCT)double[][] dctVals = applyDCT(vals);long ct2 = SystemClock.uptimeMillis();// 5. 截取 DCT 左上角的 8x8 部分double[] dctLowFreq = new double[SMALLER_SIZE * SMALLER_SIZE];for (int x = 0; x < SMALLER_SIZE; x++) {for (int y = 0; y < SMALLER_SIZE; y++) {dctLowFreq[x * SMALLER_SIZE + y] = dctVals[x][y];}}// 6. 计算均值double avg = Arrays.stream(dctLowFreq).average().orElse(0.0);long ct3 = SystemClock.uptimeMillis();// 7. 生成哈希值StringBuilder hash = new StringBuilder();for (double value : dctLowFreq) {hash.append(value > avg ? "1" : "0");}Log.d("ImgDiff", (ct1 - st) + ", " + (ct2 - ct1));return hash.toString();}// 转换为灰度图像private static Bitmap toGrayscale(Bitmap img) {int width = img.getWidth();int height = img.getHeight();Bitmap grayscaleImg = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);for (int y = 0; y < height; y++) {for (int x = 0; x < width; x++) {int pixel = img.getPixel(x, y);int red = Color.red(pixel);int green = Color.green(pixel);int blue = Color.blue(pixel);int gray = (red + green + blue) / 3;int newPixel = Color.rgb(gray, gray, gray);grayscaleImg.setPixel(x, y, newPixel);}}return grayscaleImg;}// 执行离散余弦变换(DCT)private static double[][] applyDCT(double[][] f) {int N = f.length;double[][] F = new double[N][N];for (int u = 0; u < N; u++) {for (int v = 0; v < N; v++) {double sum = 0.0;for (int i = 0; i < N; i++) {for (int j = 0; j < N; j++) {sum += f[i][j] *Math.cos((2 * i + 1) * u * Math.PI / (2.0 * N)) *Math.cos((2 * j + 1) * v * Math.PI / (2.0 * N));}}double alphaU = (u == 0) ? Math.sqrt(1.0 / N) : Math.sqrt(2.0 / N);double alphaV = (v == 0) ? Math.sqrt(1.0 / N) : Math.sqrt(2.0 / N);F[u][v] = alphaU * alphaV * sum;}}return F;}// 比较两个哈希值,返回汉明距离(不同位数的个数)public static int hammingDistance(String hash1, String hash2) {int distance = 0;for (int i = 0; i < hash1.length(); i++) {if (hash1.charAt(i) != hash2.charAt(i)) {distance++;}}return distance;}}class ImgListAdapter extends BaseAdapter{ArrayList<Item> items = new ArrayList<>();@Overridepublic int getCount() {return items.size();}@Overridepublic Object getItem(int i) {return items.get(i);}@Overridepublic long getItemId(int i) {return i;}@Overridepublic View getView(int pos, View view, ViewGroup viewGroup) {if(view == null){view = getLayoutInflater().inflate(R.layout.item_img_diff, null, false);}((ImageView)view.findViewById(R.id.ivLeft)).setImageBitmap(items.get(pos).l);((ImageView)view.findViewById(R.id.ivRight)).setImageBitmap(items.get(pos).r);((TextView)view.findViewById(R.id.tvRes)).setText(items.get(pos).res);return view;}}class Item{Bitmap l, r;String res;}
}
温馨提示
本文算法及用例仅供参考, 未经大量测试验证
请谨慎阅读参考
参考
Android Bitmap亮度调节、灰度化、二值化、相似距离实现
相关文章:
Android 图片相识度比较(pHash)
概述 在 Android 中,要比对两张 Bitmap 图片的相似度,常见的方法有基于像素差异、直方图比较、或者使用一些更高级的算法如 SSIM(结构相似性)和感知哈希(pHash)。 1. 基于像素的差异比较 可以逐像素比较…...
Gitlab 完全卸载–亲测可行
1、停止gitlab gitlab-ctl stop2.卸载gitlab(注意这里写的是gitlab-ce) rpm -e gitlab-ce 3、查看gitlab进程 ps aux | grep gitlab 4、杀掉第一个进程(就是带有好多.............的进程) 5、删除所有包含gitlab文件 find / …...
gitlab操作和管理
详细的说明下这几条指令: Git global setup git config --global user.name “” git config --global user.email “” Create a new repository git clone ssh://git12/letect.git cd vlm-event-secondary-detect git switch -c main touch README.md git add RE…...
ctfshow-web入门-反序列化(web254-web258)
目录 1、web254 2、web255 3、web256 4、web257 5、web258 1、web254 传入符合要求的用户名和密码即可: ?usernamexxxxxx&passwordxxxxxx 拿到 flag:ctfshow{e4795ccd-6bff-44b6-a15c-6c679d802e61} 2、web255 整体逻辑代码和上一道差不多 新…...
repo 命令大全详解(第十一篇 repo init)
repo forall 命令用于在指定的项目上执行给定的命令,非常适合批量操作。 参数分类及解释 基本参数 [<project>...]: 可选,指定要操作的项目。如果不指定,则对所有项目执行命令。 示例: repo forall my_project -c "git status&q…...
ComfyUI | 全新ComfyUI前端操作指南:提升你的工作速度!
随着WebUI基本停更,越来越多的AI创作者转向了ComfyUI。 ComfyUI最大的优势是简洁、高效、占用显存低,工作流模式虽然有一点入门难度,但一旦上手,操作非常舒适。 由于原Stable Diffusion团队的参与,ComfyUI的易用度也…...
nginx解决非人类使用http打开的443,解决网安漏扫时误扫443端口带来的问题
一、问题描述 正常访问https的站点时,使用网址https://www.baidu.com,但会有一种错误的访问请求http://www.baidu.com:443,一般都是非人类所为,如漏洞扫描工具,那么请求以后带来的后果是个错误页面 400 Bad Request T…...
黑马 | Reids | 基础篇
黑马reids基础篇 文章目录 黑马reids基础篇一.初始Redis1.1SQL 和 NoSql的区别1.1.1结构化和非结构化1.1.2关联和非关联1.1.3查询方式1.1.4 事务1.1.5总结 1.2 认识Redis1.3 Redis安装启动默认启动:后台启动:开机自启 1.4 Redis客户端1.4.1.Redis命令行客…...
SAP-换登录界面图片
SMW0 二、SM30 (将value值删除,登录图片恢复默认) 重新登录,更改成功。...
移动 Web核心笔记(二)
空间转换 空间:是从坐标轴角度定义的 X 、Y 和 Z 三条坐标轴构成了一个立体空间,Z 轴位置与视线方向相同。 空间转换也叫 3D转换 属性:transform 平移 /*单独设置 z轴效果不明显*/ transform: translate3d(x, y, z); transform: translateX(…...
MySQL创建和管理表
1. 基础知识 存储数据是处理数据的第一步,只有正确地把数据存储起来,才能进行有效的处理和分析。 在 MySQL 中,一个完整的数据存储过程总共有 4 步,分别是创建数据库、确认字段、创建数据表、插入数据。 从系统架构的层次上看…...
【从零开始的LeetCode-算法】910. 最小差值 II
给你一个整数数组 nums,和一个整数 k 。 对于每个下标 i(0 < i < nums.length),将 nums[i] 变成 nums[i] k 或 nums[i] - k 。 nums 的 分数 是 nums 中最大元素和最小元素的差值。 在更改每个下标对应的值之后…...
周报 | 24.10.14-24.10.20文章汇总
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。 周报 | 24.10.7-24.10.13文章汇总-CSDN博客 OpenCV与AI深度学习 | T-Rex Label !超震撼 AI 自动标注工具,开箱即用、检测一切-CSDN博客 计算机视觉与机器学习 | 目标检测 …...
Codeforce 980 Div2 A-D 题解
A. Profitable Interest Rate 原题 A. Profitable Interest Rate 思路 易推出公式 2 * a - b 代码 #include <bits/stdc.h> //#define int long long#define F(i, a, b) for (int i (a); i < (b); i) #define dF(i, a, b) for (int i (a); i > (b); i--)usi…...
一次代码优化的过程
场景说明: wpf项目,有4个不同的页面,共用一个next按钮,实现点击后跳转到下一个页面。 第一个页面是导入文件,当有2个及以上文件时,会弹窗提示。如下图所示: 之前和之后的代码对比: 之…...
多线程的学习(1)
线程的创建方式 1.继承Thread类 package duoXianCheng;public class MyThread extends Thread{public void run(){System.out.println("hoh");}public static void main(String[] args) {MyThread m1 new MyThread();m1.start();//start启动线程,调用重…...
PyCharm借助MobaXterm跳板机连接服务器
服务器信息: Step 1 MovaXterm→Session→SSH输入服务器信息 Step 2 MovaXterm→Session→SSH→Network setting→SSG gateway(jump host) 输入跳板机信息 键入密码即可 Step 3 MovaXterm→Tunneling→New SSH tunnel 依次输入:A本机端口,…...
计算机毕业论文基于Android 的签到系统设计与实现
计算机专业本科毕业设计(论文)开题报告 毕业设计(论文)题目:基于Android的签到系统设计与实现 文章目录 毕业设计论文开题报告一、课题的目的及意义(含国内外的研究现状分析):二、课题任务、重点研究内容、实现途径、条件:摘 要1. 绪论1.1. 研究背景1.2. 研究现状1.3.…...
量化学习-02
1、宏观经济学基础概念 宏观经济简单背景 宏观经济,就是在宏观范畴以全局视角观察经济现象,分析其中的经济总量。该宏观范畴所包含的范围可以指一个国家或地区,是由众多微观个体组成的一个经济体,而这里面的微观个体可以指一个家…...
SAP_MM模块-设置业务合作伙伴类型字段必输(多种方案)
一、业务背景 公司需要把供应商增加一个细分的维度,并且要求该字段设置为必输,防止用户新增供应商时忘记维护。这里给用户找了一个分类的字段:业务合作伙伴类型,本文主要讲解如何设置该字段设置为必填; 注意ÿ…...
eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)
说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
