当前位置: 首页 > news >正文

YoloV9改进策略:主干网络改进|DeBiFormer,可变形双级路由注意力|全网首发

摘要

在目标检测领域,YoloV9以其高效和准确的性能而闻名。然而,为了进一步提升其检测能力,我们引入了DeBiFormer作为YoloV9的主干网络。这个主干网络的计算量比较大,不过,上篇双级路由注意力的论文受到很大的关注,所以我也将这篇论文中的主干网络用来改进YoloV9,卡多的同学可以试试。

DeBiFormer是一种新型的视觉转换器,它结合了可变形注意力和双级路由注意力的优点。通过引入可变形双级路由注意力(DBRA)机制,DeBiFormer能够灵活且语义化地获取数据依赖的注意力模式。这种注意力中注意力的架构使得模型能够更高效地定位关键特征,从而提高检测的准确性。

将DeBiFormer应用于YoloV9的主干网络,我们实现了以下显著的改进:

  1. 更强的特征表示能力:DeBiFormer的DBRA机制能够捕获更多信息性特征,并将其回传给查询,从而增强了模型的特征表示能力。这使得YoloV9在检测目标时能够更准确地识别其形状、纹理等关键特征。
  2. 更高的检测精度:由于DeBiFormer具有更强的特征表示能力,YoloV9在检测目标时能够实现更高的精度。实验结果表明,在相同的数据集和训练策略下,改进后的YoloV9在各类目标上的检测精度均有显著提升。
  3. 更好的泛化

相关文章:

YoloV9改进策略:主干网络改进|DeBiFormer,可变形双级路由注意力|全网首发

摘要 在目标检测领域,YoloV9以其高效和准确的性能而闻名。然而,为了进一步提升其检测能力,我们引入了DeBiFormer作为YoloV9的主干网络。这个主干网络的计算量比较大,不过,上篇双级路由注意力的论文受到很大的关注,所以我也将这篇论文中的主干网络用来改进YoloV9,卡多的…...

【力扣 | SQL题 | 每日3题】力扣2988,569,1132,1158

1 hard 3mid,难度不是特别大。 1. 力扣2988:最大部门的经理 1.1 题目: 表: Employees ---------------------- | Column Name | Type | ---------------------- | emp_id | int | | emp_name | varchar | | de…...

移动网络知识

一、3G网络 TD-SCDMA(时分同步码分多址接入)、WCDMA(宽带码分多址)和CDMA2000三种不同的3G移动通信标准 TD-SCDMA(时分同步码分多址接入):中国自主开发的一种3G标准主要用于国内市场&#xff…...

CentOS系统Nginx的安装部署

CentOS系统Nginx的安装部署 安装包准备 在服务器上准备好nginx的安装包 nginx安装包下载地址为:https://nginx.org/en/download.html 解压 tar -zxvf nginx-1.26.1.tar.gz执行命令安装 # 第一步 cd nginx-1.26.1# 第二步 ./configure# 第三步 make# 第四步 mak…...

Leetcode 最长公共前缀

java solution class Solution {public String longestCommonPrefix(String[] strs) {if(strs null || strs.length 0) {return "";}//用第一个字符串作为模板,利用indexOf()方法匹配,由右至左逐渐缩短第一个字符串的长度String prefix strs[0];for(int i 1; i …...

[C#][winform]基于yolov5的驾驶员抽烟打电话安全带检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面

【重要说明】 该系统以opencvsharp作图像处理,onnxruntime做推理引擎,使用CPU进行推理,适合有显卡或者没有显卡windows x64系统均可,不支持macOS和Linux系统,不支持x86的windows操作系统。由于采用CPU推理,要比GPU慢。…...

【Flutter】基础入门:开发环境搭建

Flutter 是一个强大的跨平台框架,支持在 Android、iOS、Windows、Linux、Web 等多种平台上开发应用。下面将详细介绍如何在各个平台上构建 Flutter 开发环境,并使用相同的项目代码构建出一个可以在多个平台运行的跨平台 Demo。 Flutter 环境配置&#x…...

AI学习指南深度学习篇-对比学习(Contrastive Learning)简介

AI学习指南深度学习篇 - 对比学习(Contrastive Learning)简介 目录 引言对比学习的背景对比学习的定义对比学习在深度学习中的应用 无监督学习表示学习 详细示例 基本示例先进示例 对比学习的优缺点总结与展望 1. 引言 随着人工智能(AI&am…...

【蓝队技能】【规则开发1】Suricata-C2Webshell隧道

蓝队技能 Suricata-C2&Webshell&隧道 蓝队技能总结前言一、C2规则开发1.1 Sliver1.2 CS 二、内网隧道1.1 frps1.2 nps 三、webshell3.1 蚁剑3.2 冰蝎3.3 哥斯拉 总结 前言 本文聚焦于Suricata规则开发,提供针对Sliver、Cobalt Strike(CS&#xf…...

全面了解 NGINX 的负载均衡算法

NGINX 提供多种负载均衡方法,以应对不同的流量分发需求。常用的算法包括:最少连接、最短时间、通用哈希、随机算法和 IP 哈希。这些负载均衡算法都通过独立指令来定义,每种算法都有其独特的应用场景。 以下负载均衡方法(IP 哈希除…...

Java-继承与多态-上篇

关于类与对象&#xff0c;内容较多&#xff0c;我们分为两篇进行讲解&#xff1a; &#x1f4da; Java-继承与多态-上篇&#xff1a;———— <就是本篇> &#x1f4d5; 继承的概念与使用 &#x1f4d5; 父类成员访问 &#x1f4d5; super关键字 &#x1f4d5; supe…...

通过比较list与vector在简单模拟实现时的不同进一步理解STL的底层

cplusplus.com/reference/list/list/?kwlist 当我们大致阅读完list的cplusplus网站的文档时&#xff0c;我们会发现它提供的接口大致上与我们的vector相同。当然的&#xff0c;在常用接口的简单实现上它们也大体相同&#xff0c;但是它们的构造函数与迭代器的实现却大有不同。…...

软件I2C的代码

I2C的函数 GPIO的配置——scl和sda都配置为开漏输出 void MyI2C_Init(void) {RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);GPIO_InitTypeDef GPIO_InitStruture;GPIO_InitStruture.GPIO_Mode GPIO_Mode_Out_OD;GPIO_InitStruture.GPIO_PinGPIO_Pin_10 | GPIO_Pin_…...

登录时用户名密码加密传输(包含前后端代码)

页面输入用户名密码登录过程中&#xff0c;如果没有对用户名密码进行加密处理&#xff0c;可能会导致传输过程中数据被窃取&#xff0c;就算使用https协议&#xff0c;在浏览器控制台的Request Payload中也是能直接看到传输的明文&#xff0c;安全感是否还是不足。 大致流程&a…...

ai聊天对话页面-uniapp

流式传输打字机效果&#xff0c;只支持uniapp内使用 &#xff0c;下载地址 https://download.csdn.net/download/qq_54123885/89899859...

虚拟滚动列表如何实现?

highlight: a11y-dark 虚拟滚动列表&#xff0c;虚拟滚动的关键在于只渲染当前视口内可见的数据项&#xff0c;而不是一次性渲染所有数据项。这可以显著提高性能&#xff0c;尤其是在处理大量数据时。 以下是一个完整的虚拟滚动列表的示例代码&#xff1a; <!DOCTYPE htm…...

07_Linux网络配置与管理:命令与工具指南

本系列文章导航&#xff1a;01_Linux基础操作CentOS7学习笔记-CSDN博客 文章目录 网络配置与管理&#xff1a;命令与工具指南1. ping命令2. ifconfig命令3. ip命令4. route命令5. ip route命令6. nslookup命令7. nmcli命令8. nmtui命令9. RHEL7修改网卡名1. 修改网络(会话)配置…...

首个统一生成和判别任务的条件生成模型框架BiGR:专注于增强生成和表示能力,可执行视觉生成、辨别、编辑等任务

BiGR是一种新型的图像生成模型&#xff0c;它可以生成高质量的图像&#xff0c;同时还能有效地提取图像特征。该方法是通过将图像转换为一系列的二进制代码来工作&#xff0c;这些代码就像是图像的“压缩版”。在训练时会遮住一些代码&#xff0c;然后让模型学习如何根据剩下的…...

【Java知识】Java进阶-服务发现机制SPI

文章目录 SPI概述SPI 工作原理 ServiceLoader代码展示简化的 ServiceLoader 类关键点解释使用示例1. 定义服务接口2. 实现服务提供者3. 配置文件4. 加载服务提供者 总结 SPI使用场景1. 数据库驱动2. 日志框架3. 图像处理4. 加密算法5. 插件系统6. 缓存机制示例代码1. 定义服务接…...

多模态技术的协同表现:从文本生成、语音合成到口型同步综合测评

本文是针对多模态对话系统核心技术栈的使用效果和网络测评整理。 测评内容基于用户体验&#xff0c;侧重于从使用者角度出发&#xff0c;讨论实际操作中的体验感受&#xff0c;如技术的易用性、输出效果如文本的连贯性、语音的自然度、口型同步的准确性等。不涉及具体算法架构…...

SpringBoot-17-MyBatis动态SQL标签之常用标签

文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...