当前位置: 首页 > news >正文

Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解

Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解

这篇文章介绍了如何使用 Python 的 Numpy 库来实现神经网络的自动训练,重点展示了反向传播算法和激活函数的应用。反向传播是神经网络训练的核心,能够通过计算梯度来优化模型参数,使得预测更加精准。文中详细演示了如何使用 Numpy 进行神经网络的前向预测、反向传播更新、误差计算,并通过引入 ReLU 等激活函数提升模型的非线性拟合能力。最后,通过对比训练前后的结果,展示了加入激活函数后模型性能的显著提升,适合初学者和爱好者学习神经网络的基础原理与应用。

文章目录

  • Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解
      • 一 简单介绍反向传播
      • 二 用 Numpy 来做神经网络
        • 没有训练
        • 开始训练
      • 三 加入激活函数
        • 常用激活函数
        • 非线性计算,不加激活函数
        • 非线性计算,加入激活函数
      • 四 完整代码示例
      • 五 源码地址

一 简单介绍反向传播

反向传播(Backpropagation)是训练神经网络的核心算法,用于通过计算损失函数相对于网络各个参数的梯度,逐步优化这些参数,从而使模型的预测结果更加准确。使用梯度反向更新规则做神经网络参数优化调整。
这段代码计算每一层神经层的更新幅度,让神经网络对数据拟合变好,不理解先当工具方法记住。

def backprop(dz, layer, layer_in, learning_rate=0.01):"""进行反向传播,更新当前层的权重和偏置,并计算传递给前一层的梯度。参数:dz: 当前层输出的梯度(损失函数对激活输出的偏导数)layer: 当前层的参数字典,包含权重 "w" 和偏置 "b"layer_in: 输入到当前层的激活值learning_rate: 学习率,用于控制参数更新的步长,默认值为 0.01返回:new_dz: 传递给前一层的梯度"""# 计算损失函数对权重的梯度,layer_in.T 是当前层输入的转置,dot(dz) 进行矩阵乘法gw = layer_in.T.dot(dz)# 计算损失函数对偏置的梯度,按列求和,保留维度,求得每个偏置的梯度gb = np.sum(dz, axis=0, keepdims=True)# 计算传递给前一层的梯度,使用当前层的权重转置与 dz 相乘new_dz = dz.dot(layer["w"].T)# 更新当前层的权重:使用学习率乘以权重梯度,然后加到原有的权重上(梯度上升)layer["w"] += learning_rate * gw# 更新当前层的偏置:同样使用学习率乘以偏置梯度,然后加到原有的偏置上layer["b"] += learning_rate * gb# 返回传递给前一层的梯度,以便继续进行反向传播return new_dz

二 用 Numpy 来做神经网络

没有训练
def predict(x, l1, l2):o1 = x.dot(l1["w"]) + l1["b"]o2 = o1.dot(l2["w"]) + l2["b"]return [o1, o2]def predict01():# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]# 搭建模型l1 = layer(1, 3)l2 = layer(3, 1)draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

可以看出在没有训练的时候,模型预测的结果与实际 y 值在数量级上存在较大差异。

开始训练
def predict02():# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]l1 = layer(1, 3)l2 = layer(3, 1)# 训练 50 次learning_rate = 0.01for i in range(50):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)# 画一个训练后的图,对比上文中有数值问题的线draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

三 加入激活函数

常用激活函数
# 激活函数
def relu(x):return np.maximum(0, x)def relu_derivative(x):  # 导数return np.where(x > 0, np.ones_like(x), np.zeros_like(x))def tanh(x):return np.tanh(x)def tanh_derivative(x):  # 导数return 1 - np.square(np.tanh(x))def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):  # 导数o = sigmoid(x)return o * (1 - o)
非线性计算,不加激活函数
def predict03():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# draw_scatter(x, y)# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

模型训练结果在量级上出现较大差距,欠拟合。

非线性计算,加入激活函数
def predict04():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, a1, o2 = predictjihuo(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, a1)dz1 *= relu_derivative(o1)  # 这里要添加对应激活函数的反向传播_ = backprop(dz1, l1, x)draw_line(x, predictjihuo(x, l1, l2)[-1])draw_scatter(x, y)

运行结果

在这里插入图片描述

模型成功拟合了这些异常数据点,说明非线性激活函数确实非常有效。

四 完整代码示例

# This is a sample Python script.
from matplotlib import pyplot as plt
import numpy as np# Press ⌃R to execute it or replace it with your code.
# Press Double ⇧ to search everywhere for classes, files, tool windows, actions, and settings.
def draw_scatter(x, y):# 使用 matplotlib 的 scatter 方法来绘制散点图# x.ravel() 和 y.ravel() 将 x 和 y 的二维数组转换为一维数组,适合作为散点图的输入plt.scatter(x.ravel(), y.ravel())# 显示图表plt.show()def draw_line(x, y):idx = np.argsort(x.ravel())plt.plot(x.ravel()[idx], y.ravel()[idx])# plt.show()def layer(in_dim, out_dim):weights = np.random.normal(loc=0, scale=0.1, size=[in_dim, out_dim])bias = np.full([1, out_dim], 0.1)return {"w": weights, "b": bias}# 激活函数
def relu(x):return np.maximum(0, x)def relu_derivative(x):  # 导数return np.where(x > 0, np.ones_like(x), np.zeros_like(x))def tanh(x):return np.tanh(x)def tanh_derivative(x):  # 导数return 1 - np.square(np.tanh(x))def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):  # 导数o = sigmoid(x)return o * (1 - o)def backprop(dz, layer, layer_in, learning_rate=0.01):"""进行反向传播,更新当前层的权重和偏置,并计算传递给前一层的梯度。参数:dz: 当前层输出的梯度(损失函数对激活输出的偏导数)layer: 当前层的参数字典,包含权重 "w" 和偏置 "b"layer_in: 输入到当前层的激活值learning_rate: 学习率,用于控制参数更新的步长,默认值为 0.01返回:new_dz: 传递给前一层的梯度"""# 计算损失函数对权重的梯度,layer_in.T 是当前层输入的转置,dot(dz) 进行矩阵乘法gw = layer_in.T.dot(dz)# 计算损失函数对偏置的梯度,按列求和,保留维度,求得每个偏置的梯度gb = np.sum(dz, axis=0, keepdims=True)# 计算传递给前一层的梯度,使用当前层的权重转置与 dz 相乘new_dz = dz.dot(layer["w"].T)# 更新当前层的权重:使用学习率乘以权重梯度,然后加到原有的权重上(梯度上升)layer["w"] += learning_rate * gw# 更新当前层的偏置:同样使用学习率乘以偏置梯度,然后加到原有的偏置上layer["b"] += learning_rate * gb# 返回传递给前一层的梯度,以便继续进行反向传播return new_dzdef predictjihuo(x, l1, l2):o1 = x.dot(l1["w"]) + l1["b"]a1 = relu(o1)  # 这里我添加了一个激活函数o2 = a1.dot(l2["w"]) + l2["b"]return [o1, a1, o2]def predict(x, l1, l2):"""预测函数,执行前向传播,计算两层神经网络的输出。参数:x: 输入数据,形状为 [N, 输入特征数],此处为 [10, 1]。l1: 第一层的参数字典,包含权重 "w" 和偏置 "b"。l2: 第二层的参数字典,包含权重 "w" 和偏置 "b"。返回:o1: 第一层的输出结果。o2: 第二层的输出结果(最终输出)。"""# 第一层的输出,x.dot(l1["w"]) 是线性组合,+ l1["b"] 加上偏置o1 = x.dot(l1["w"]) + l1["b"]# 第二层的输出,o1.dot(l2["w"]) 是线性组合,+ l2["b"] 加上偏置o2 = o1.dot(l2["w"]) + l2["b"]# 返回两层的输出,o1 为第一层的输出,o2 为最终的输出return [o1, o2]def predict01():"""模拟预测和数据绘制函数,包含数据生成、模型搭建、前向预测和绘图。"""# 生成输入数据 x,使用 np.linspace 生成从 -1 到 1 的 10 个均匀分布的点,并reshape为 [10, 1]x = np.linspace(-1, 1, 10)[:, None]  # 形状 [10, 1]# 生成目标值 y,基于 x 加上高斯噪声,模拟真实数据,形状为 [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # 形状 [10, 1]# 搭建神经网络模型# 第一层:输入维度为 1,输出维度为 3(即3个神经元)l1 = layer(1, 3)# 第二层:输入维度为 3,输出维度为 1l2 = layer(3, 1)# 使用 predict 函数进行前向传播,绘制预测结果# 只提取第二层的输出 o2 来绘制预测的线draw_line(x, predict(x, l1, l2)[-1])# 绘制真实数据点的散点图draw_scatter(x, y)def predict02():# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]l1 = layer(1, 3)l2 = layer(3, 1)# 训练 50 次learning_rate = 0.01for i in range(50):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)# 画一个训练后的图,对比上文中有数值问题的线draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)def predict03():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# draw_scatter(x, y)# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, o2 = predict(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, o1)_ = backprop(dz1, l1, x)draw_line(x, predict(x, l1, l2)[-1])draw_scatter(x, y)def predict04():# 非线性计算x = np.linspace(-1, 1, 30)[:, None]  # shape [30, 1]y = np.random.normal(loc=0, scale=0.2, size=[30, 1]) + x ** 2  # shape [30, 1]# 搭建模型l1 = layer(1, 10)l2 = layer(10, 1)# 训练 300 次learning_rate = 0.01for i in range(300):# 前向预测o1, a1, o2 = predictjihuo(x, l1, l2)# 误差计算if i % 10 == 0:average_cost = np.mean(np.square(o2 - y))print(average_cost)# 反向传播,梯度更新dz2 = -2 * (o2 - y)  # 输出误差 (o2 - y)**2 的导数dz1 = backprop(dz2, l2, a1)dz1 *= relu_derivative(o1)  # 这里要添加对应激活函数的反向传播_ = backprop(dz1, l1, x)draw_line(x, predictjihuo(x, l1, l2)[-1])draw_scatter(x, y)def print_hi(name):# Use a breakpoint in the code line below to debug your script.print(f'Hi, {name}')  # Press ⌘F8 to toggle the breakpoint.# 模型前向预测# 数据x = np.linspace(-1, 1, 10)[:, None]  # shape [10, 1]y = np.random.normal(loc=0, scale=0.2, size=[10, 1]) + x  # shape [10, 1]# draw_scatter(x, y)# 模型l1 = layer(1, 3)l2 = layer(3, 1)# 计算o = x.dot(l1["w"]) + l1["b"]print("第一层出来后的 shape:", o.shape)o = o.dot(l2["w"]) + l2["b"]print("第二层出来后的 shape:", o.shape)print("output:", o)# draw_scatter(x, o)# 简单介绍反向传播# predict01()# predict02()# 加入激活函数# 非线性计算,没有激活函数的网络训练,量级上的差距大# predict03()# 非线性计算,加入激活函数predict04()# Press the green button in the gutter to run the script.
if __name__ == '__main__':print_hi('神经网络-自动训练')# See PyCharm help at https://www.jetbrains.com/help/pycharm/

复制粘贴并覆盖到你的 main.py 中运行,运行结果如下。

Hi, 神经网络-自动训练
第一层出来后的 shape: (10, 3)
第二层出来后的 shape: (10, 1)
output: [[0.08015376][0.08221984][0.08428592][0.086352  ][0.08841808][0.09048416][0.09255024][0.09461632][0.0966824 ][0.09874848]]
0.2226335913018929
0.18084056623965614
0.17646520657891238
0.16955062165383475
0.15974897747454914
0.14609449775016456
0.12879398035319886
0.11000871768876343
0.09272999949822598
0.07986100731357502
0.07149628207512877
0.06657668787644673
0.06412748050655417
0.06308965708664192
0.06255298788129363
0.06233764319523034
0.06229224784095634
0.062220235356859256
0.06227320308423159
0.06227607241875045
0.06218961938206315
0.062183519685144004
0.06220136162617964
0.062260925337883535
0.06228186644083771
0.062212564435570314
0.06214763225225857
0.062190709318072676
0.06225667345334308
0.06227302776778138

五 源码地址

代码地址:

国内看 Gitee 之 numpy/神经网络-自动训练.py

国外看 GitHub 之 numpy/神经网络-自动训练.py

引用 莫烦 Python

相关文章:

Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解

Python Numpy 实现神经网络自动训练:反向传播与激活函数的应用详解 这篇文章介绍了如何使用 Python 的 Numpy 库来实现神经网络的自动训练,重点展示了反向传播算法和激活函数的应用。反向传播是神经网络训练的核心,能够通过计算梯度来优化模…...

Apache Calcite - 基于规则的查询优化

基于规则的查询优化 基于规则的查询优化(Rule-based Query Optimization)是一种通过应用一系列预定义的规则来优化查询计划的技术。这些规则描述了如何转换关系表达式,以提高查询执行的效率。基于规则的优化器并不依赖于统计信息&#xff0c…...

react学习笔记,ReactDOM,react-router-dom

react 学习 1. 下载与安装 下载 npm install -g create-react-app 安装 npx create-react-app xxx 推荐 npm init react-app xxx yarn create react-app xxx 2. 创建 react 元素 indexjs 文件 import React from "react"; import ReactDOM from "react…...

优化UVM环境(八)-整理project_common_pkg文件

书接上回: 优化UVM环境(七)-整理环境,把scoreboard拿出来放在project_common环境里 Prj_cmn_pkg.sv考虑到是后续所有文件的基础,需要引入uvm_pkg并把自身这个pkg import给后续的文件: 这里有3个注意事项&…...

【实战案例】Django框架连接并操作数据库MySQL相关API

本文相关操作基于上次操作基本请求及响应基础之上【实战案例】Django框架基础之上编写第一个Django应用之基本请求和响应 Django框架中默认会连接SQLite数据库,好处是方便无需远程连接,打包项目挪到其他环境安装一下依赖一会就跑起来,但是缺点…...

【其他】无法启动phptudy服务,提示错误2:系统找不到指定的文件

在服务中启动phpstudy服务时,提示“windows 无法启动phpstudy服务 服务(位于本地计算机上) 错误2:系统找不到指定的文件”的错误。导致错误的原因是可执行文件的路径不对,修改成正确的路径就可以了。 下面是错误的路径,会弹出错误窗口&#…...

AI驱动的支持截图或线框图快速生成网页应用的开源项目

Napkins.dev是什么 Napkins.dev是一个创新的开源项目,基于AI技术将用户的截图或线框图快速转换成可运行的网页应用程序。项目背后依托于Meta的Llama 3.1 405B大型语言模型和Llama 3.2 Vision视觉模型,结合Together.ai的推理服务,实现从视觉设…...

es集群索引是黄色

排查 GET /_cat/shards?hindex,shard,prirep,state,unassigned.reason 查询原因 发现node正常 执行重新分配 retry_failedtrue 参数告诉Elasticsearch重试那些因某种原因(如节点故障、资源不足等)而失败的分片分配。这个选项通常用来尝试再次分配那些…...

获取淘宝商品评论的方法分享-调用API接口item_review

在电商领域,商品评论是消费者了解产品、做出购买决策的重要依据。淘宝作为中国最大的电商平台之一,其商品评论系统涵盖了海量的用户反馈数据。为了帮助企业、电商数据分析师、市场研究人员以及普通消费者更高效地获取这些评论数据,淘宝开放平…...

MATLAB人脸考勤系统

MATLAB人脸考勤系统课题介绍 该课题为基于MATLAB平台的人脸识别系统。传统的人脸识别都是直接人头的比对,现实意义不大,没有一定的新意。该课题识别原理为:先采集待识别人员的人脸,进行训练,得到人脸特征值。测试的时…...

Spring篇(事务篇 - 基础介绍)

目录 一、JdbcTemplate(持久化技术) 1. 简介 2. 准备工作 2.1. 引入依赖坐标 2.2. 创建jdbc.properties 2.3. 配置Spring的配置文件 3. 测试 3.1. 在测试类装配 JdbcTemplate 3.2. 测试增删改功能 查询一条数据为实体类对象 查询多条数据为一个…...

qt EventFilter用途详解

一、概述 EventFilter是QObject类的一个事件过滤器,当使用installEventFilter方法为某个对象安装事件过滤器时,该对象的eventFilter函数就会被调用。通过重写eventFilter方法,开发者可以在事件处理过程中进行拦截和处理,实现对事…...

[ 钓鱼实战系列-基础篇-6 ] 一篇文章让你了解邮件服务器机制(SMTP/POP/IMAP)-1

🍬 博主介绍 👨‍🎓 博主介绍:大家好,我是 _PowerShell ,很高兴认识大家~ ✨主攻领域:【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 🎉点赞➕评论➕收藏 养成习…...

wordpress伪静态规则

WordPress 伪静态规则是指将 WordPress 生成的动态 URL 转换为静态 URL 的规则,这样做可以提高网站的搜索引擎优化(SEO)效果,并且使得 URL 更加美观、易于记忆。伪静态规则通常需要在服务器的配置文件中设置,不同的服务器环境配置方法有所不同…...

缓存框架JetCache源码解析-缓存定时刷新

作为一个缓存框架,JetCache支持多级缓存,也就是本地缓存和远程缓存,但是不管是使用着两者中的哪一个或者两者都进行使用,缓存的实时性一直都是我们需要考虑的问题,通常我们为了尽可能地保证缓存的实时性,都…...

docker配置mysql8报错 ERROR 2002 (HY000)

通过docker启动的mysql,发现navicat无法连接,后来进入容器内部也是无法连接,产生以下错误 root9f3b90339a14:/var/run/mysqld# mysql -u root -p Enter password: ERROR 2002 (HY000): Cant connect to local MySQL server through socket …...

【Linux】为什么环境变量具有全局性?共享?写时拷贝优化?

环境变量表具有全局性的原因: 环境变量表之所以具有全局性的特征,主要是因为它们是在进程上下文中维护的,并且在大多数操作系统中,当一个进程创建另一个进程(即父进程创建子进程)时,子进程会继承…...

如何在Linux中找到MySQL的安装目录

前言 发布时间:2024-10-22 在日常管理和维护数据库的过程中,了解MySQL的确切安装位置对于执行配置更改、更新或者进行故障排查是非常重要的。本文将向您介绍几种在Linux环境下定位MySQL安装路径的方法。 通过命令行工具快速定位 使用 which 命令 首…...

机器人备件用在哪些领域

机器人备件,作为机器人技术的重要组成部分,被广泛应用于多个领域,以提高生产效率、降低成本、增强产品质量,并推动相关行业的智能化发展。以下是一些主要的应用领域: 制造业: 机器人备件在制造业中的应用最…...

基于单片机优先级的信号状态机设计

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、背景知识二、使用步骤1.定义相应状态和信号列表2.获取最高优先级信号3.通用状态机实现4.灯的控制函数 总结 前言 在嵌入式系统中,设备控制的灵…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

【2025年】解决Burpsuite抓不到https包的问题

环境:windows11 burpsuite:2025.5 在抓取https网站时,burpsuite抓取不到https数据包,只显示: 解决该问题只需如下三个步骤: 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

2023赣州旅游投资集团

单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...