当前位置: 首页 > news >正文

【MATLAB源码-第261期】基于matlab的帝企鹅优化算法(EPO)机器人栅格路径规划,输出做短路径图和适应度曲线

操作环境:

MATLAB 2022a

1、算法描述

帝企鹅优化算法(Emperor Penguin Optimizer,简称EPO)是一种基于自然现象的优化算法,灵感来自于帝企鹅在南极极寒环境中的生活习性。帝企鹅是一种群居动物,生活在极端环境下,它们通过独特的行为模式来维持体温并应对寒冷的环境。这种行为模式和策略,为我们提供了设计优化算法的灵感。

一、帝企鹅的群体行为与优化思想的关联
帝企鹅的行为模式最具代表性的便是它们通过集体合作来应对寒冷的天气。在严冬时,帝企鹅会围成一个圆圈,紧密挤在一起,通过这种群体行为减少个体的热量散失,位于群体中心的企鹅会受到保护,免受强风和低温的影响,而在边缘的企鹅则承受更多的寒冷和风力。然而,帝企鹅并不是始终固定在某个位置,而是通过定期的“轮换”,使得所有企鹅都有机会待在中心区域以保存体力,避免长期暴露在寒冷中。这种动态的轮换机制,使得企鹅群体能够在严酷的环境中生存下来。

从优化的角度看,帝企鹅的这种集群行为与智能优化算法中的搜索空间探索与开发过程有很多相似之处。优化问题通常可以理解为在复杂的多维空间中寻找全局最优解的过程,而这一过程中既需要对搜索空间进行全面的探索(类似于企鹅在群体边缘接触寒冷的部分),也需要对潜在的优良解进行局部开发(类似于群体中心的温暖区域)。帝企鹅的集群行为通过合作与动态轮换,使得整个群体能够有效平衡局部开发与全局探索,这与很多智能优化算法的思想是一致的。

二、EPO算法的核心思想
帝企鹅优化算法借鉴了帝企鹅的这种生存策略,将其转化为解决优化问题的一种方法。该算法的主要目标是通过模拟帝企鹅群体在南极环境中的行为,逐步逼近问题的最优解。算法将搜索空间中的每个候选解视为一个“企鹅”,并根据每个解的质量来决定其所处的群体位置。

1. 初始群体生成
在EPO算法的初始阶段,首先会在搜索空间中随机生成一个帝企鹅群体。每个帝企鹅代表一个可能的解,这些解的质量通过目标函数的值来衡量。在自然界中,帝企鹅为了生存会在极寒环境下不断调整自己的位置,而在EPO中,这一过程被模拟为解的迭代更新。

2. 位置更新与温度梯度
帝企鹅在极寒环境中会通过调整自己的相对位置来维持体温,特别是群体边缘的企鹅会逐步向群体中心靠近以获得更多的保护。同样,在EPO中,低质量的候选解(即距离最优解较远的解)会不断向高质量的解靠近,从而提高整体的搜索效率。为了实现这种效应,EPO引入了温度梯度的概念,模拟帝企鹅在不同温度下的行为变化。在优化过程中,算法会根据“温度”的高低来控制候选解的更新幅度和方向,这类似于在不同条件下帝企鹅的位置调整机制。

3. 群体中心与轮换机制
在实际的帝企鹅群体中,位于中心的企鹅享有最大的热量保护,而在边缘的企鹅会面临更大的风险。但随着时间推移,边缘的企鹅会逐步向中心移动,以避免长期暴露在寒冷中。同理,EPO算法通过一种“轮换”机制使得解群体中的个体动态调整自己的位置。算法中,较好的候选解可以视为群体的“中心”,它们引导着整个群体的搜索方向,但这种引导并不是固定的,而是会根据新的解的出现而动态变化。这种动态更新机制有助于算法避免陷入局部最优,从而增强对全局最优解的探索能力。

4. 协作与竞争
在自然环境中,帝企鹅不仅依赖集体合作来保持体温,它们之间也存在一定的竞争关系。在EPO算法中,这种竞争体现在不同候选解之间的相互作用上。每个解都试图找到最优的解,这就像企鹅在极寒中争夺有利的位置一样。通过这种协作与竞争机制,EPO能够在全局搜索和局部开发之间保持平衡,使算法能够更快、更准确地收敛到最优解。

三、EPO算法的优点与挑战
1. 优点
EPO算法的最大优点在于其模拟了自然界中的一种自适应行为,这使得它能够在处理复杂的多维优化问题时表现出色。具体而言,EPO在以下几个方面具有显著的优势:

全局探索与局部开发的平衡:EPO通过模拟帝企鹅的集群行为,能够在全局探索和局部开发之间实现良好的平衡。通过群体中心的动态轮换机制,EPO可以有效避免陷入局部最优,同时又能对潜在的优良解进行深入开发。

动态自适应更新:EPO通过引入温度梯度的概念,使得候选解的更新过程具有自适应性。随着搜索过程的进行,算法可以根据当前解的质量动态调整更新幅度和方向,从而提高搜索效率。

易于实现:EPO的核心思想相对简单,易于实现和扩展。它不需要复杂的数学模型或计算过程,因此在实际应用中具有较高的可操作性。

2. 挑战
尽管EPO在许多优化问题上表现优异,但它也面临一些挑战:

参数调节问题:EPO算法中的温度梯度、解更新机制等都依赖于一些参数的设定。在实际应用中,不同问题需要不同的参数设置,如果参数选择不当,可能会影响算法的性能。

收敛速度问题:虽然EPO在全局探索和局部开发之间保持了较好的平衡,但在某些复杂的优化问题上,算法的收敛速度可能不够快。为了解决这一问题,研究人员通常会结合其他优化策略,例如混合优化算法,以提高EPO的效率。

局部最优问题:虽然EPO通过动态轮换机制来避免陷入局部最优,但在一些复杂的高维优化问题中,它仍然可能面临局部最优解的困扰。为了解决这个问题,可以考虑引入其他元启发式方法与EPO进行结合,以增强其跳出局部最优的能力。

四、EPO算法的应用领域
由于EPO具有良好的全局搜索和局部开发能力,它在许多实际问题中得到了广泛应用。以下是一些典型的应用领域:

1. 工程优化
EPO被广泛应用于各种工程优化问题中。例如,在结构优化设计中,EPO可以帮助设计师在多个设计方案中寻找最优方案,减少成本并提高结构的性能。此外,在电力系统优化、交通规划和工业控制等领域,EPO也有着广泛的应用。

2. 图像处理
在图像处理领域,EPO被用于解决图像分割、边缘检测等问题。通过EPO,算法可以在大量像素点中快速找到最佳的分割边界,提高图像处理的效率和精度。

3. 机器学习与数据挖掘
EPO还可以用于机器学习模型的超参数优化和特征选择问题。在构建机器学习模型时,选择合适的超参数和特征是至关重要的,而EPO能够通过其高效的搜索机制,帮助找到最优的超参数组合和特征集,提高模型的性能。

4. 网络与通信优化
在网络通信领域,EPO被用于优化网络拓扑结构、路由选择和资源分配等问题。通过EPO的全局搜索能力,算法可以找到最佳的网络配置方案,从而提高通信效率并降低成本。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

  V

点击下方名片关注公众号获取

相关文章:

【MATLAB源码-第261期】基于matlab的帝企鹅优化算法(EPO)机器人栅格路径规划,输出做短路径图和适应度曲线

操作环境: MATLAB 2022a 1、算法描述 帝企鹅优化算法(Emperor Penguin Optimizer,简称EPO)是一种基于自然现象的优化算法,灵感来自于帝企鹅在南极极寒环境中的生活习性。帝企鹅是一种群居动物,生活在极端…...

Spring Boot 核心理解-profile

在 Spring Boot 中,application.properties 和 application.yml 是用来管理应用程序配置的主要文件。为了方便在不同的环境(如 dev、test、prod)下进行配置管理,Spring Boot 提供了 Profile 的概念,这使得我们可以针对…...

docker清理未使用的 Docker 资源

docker system prune --all --forcedocker system prune --all --force 是一个 Docker 命令,用于清理未使用的 Docker 资源。具体含义如下: docker system prune:这个命令会清理所有未使用的 Docker 资源,包括未使用的容器、网络…...

新网虚拟主机wordpress伪静态规则

先在WordPress安装目录下的创建.htaccess 文件&#xff0c;并在该文件中添加以下规则&#xff1a; BEGIN WordPress <IfModule mod_rewrite.c> RewriteEngine On RewriteBase / RewriteRule ^index.php$ [L] RewriteCond %{REQUEST_FILENAME} !f RewriteCond %{REQUEST_…...

Spring Cloud LoadBalancer

什么是负载均衡&#xff1f; 如果一个服务对应多个实例&#xff0c;我们需要把流量合理的分配给多个实例&#xff1b;当服务流量增⼤时, 通常会采⽤增加机器的⽅式进⾏扩容, 负载均衡就是⽤来在多个机器或者其他资源&#xff0c;中, 按照⼀定的规则合理分配负载. 服务端负载…...

面向对象与设计模式第二课:设计模式实战

第三章&#xff1a;面向对象与设计模式 第二课&#xff1a;设计模式实战 设计模式是软件工程中的一项重要实践&#xff0c;它为解决常见的设计问题提供了经过验证的解决方案。本课将深入探讨几种常见的设计模式&#xff0c;并通过实际案例分析其在项目中的应用。 1. 每种设计…...

非科班出身如何转行程序员?

非科班出身是指那些大学专业为非计算机相关专业的人群&#xff0c;多数人对于计算机基础了解比较少&#xff0c;甚至零基础。这部分人群中有相当多一部分处于对于编程的兴趣和外界了解的印象想转行成为一名程序员。 非科班出身与计算机科班出身相比有着天然的劣势&#xff0c;在…...

多台NFS客户端访问一台nfs服务器

目录 1.安装服务 2.创建用户和用户组 3.写配置文件 (服务端) 4.创建/share目录 5.挂载服务&#xff08;在两个服务端上&#xff09; 6.测试 1.安装服务 yum -y install rpcbind nfs 2.创建用户和用户组 useradd -u 555 nfs-share groupadd -u 556 nfs-share …...

【STM32 HAL库】MPU6050姿态解算 卡尔曼滤波

【STM32 HAL库】MPU6050姿态解算 卡尔曼滤波 前言MPU6050寄存器代码详解mpu6050.cmpu6050.h 使用说明 前言 本篇文章基于卡尔曼滤波的原理详解与公式推导&#xff0c;来详细的解释下如何使用卡尔曼滤波来解算MPU6050的姿态 参考资料&#xff1a;Github_mpu6050 MPU6050寄存器…...

Linux系统——ssh远程连接

Linux系统——ssh远程连接 一、ssh协议介绍1、远程连接协议2、ssh服务基本操作3、ssh常用操作 二、ssh加密1、加密算法类型2、对称加密算法3、非对称加密算法 三、免密ssh的配置1、ssh认证方式2、配置免密ssh3、ssh-copy-id做了什么&#xff1f; 四、ssh服务配置 一、ssh协议介…...

python学习-第一个小游戏(vscode环境)

学习小甲鱼的视频&#xff0c;写了一个小游戏&#xff0c;vscode环境 运行结果 源码地址&#xff1a; python小游戏-猜数字源码...

程序设计基础I-单元测试2(机测)

7-1 sdut-C语言实验-AB for Input-Output Practice (不确定次数循环) Your task is to Calculate a b. Too easy?! Of course! I specially designed the problem for all beginners. You must have found that some problems have the same titles with this one, yes, a…...

Claude 3.5深夜觉醒,学会模仿人类用电脑,力压GPT-4o

1.Claude 3.5深夜重磅更新 Anthropic AI深夜发布了备受期待的Claude 3.5系列更新&#xff0c;包括了全新升级的Claude 3.5 Sonnet和首发的Claude 3.5 Haiku。 虽然备受期待的Opus版本尚未公布&#xff0c;但新版本的Sonnet在推理能力上取得了显著的进步&#xff0c;超越了Open…...

PuTTY

PuTTY 是一个免费的开源终端仿真器和串口终端&#xff0c;广泛用于在 Windows 系统上进行 SSH、Telnet 和 Rlogin 等网络协议的连接。 它允许用户通过安全的方式访问远程计算机&#xff0c;常用于管理服务器和网络设备。 PuTTY 也支持公钥身份验证和端口转发等功能&#xff0c;…...

2024软件测试面试秘籍(含答案+文档)

&#x1f345; 点击文末小卡片&#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Part1 1、你的测试职业发展是什么&#xff1f; 测试经验越多&#xff0c;测试能力越高。所以我的职业发展是需要时间积累的&#xff0c;一步步向着高级测试工程师…...

券商api怎么获取,如何获取券商API接口?

炒股自动化&#xff1a;申请官方API接口&#xff0c;散户也可以 python炒股自动化&#xff08;0&#xff09;&#xff0c;申请券商API接口 python炒股自动化&#xff08;1&#xff09;&#xff0c;量化交易接口区别 Python炒股自动化&#xff08;2&#xff09;&#xff1a;获取…...

跟着六西格玛设计DFSS走,让你的项目、服务、产品都“牛”起来——张驰咨询

六西格玛设计&#xff0c;这一数据驱动的质量管理策略&#xff0c;正以其独特的魅力和广泛的适用性&#xff0c;在各行各业中掀起了一场质量革命。从精密的制造业到细致的服务业&#xff0c;再到复杂的项目管理&#xff0c;六西格玛设计以其严谨的逻辑和高效的方法&#xff0c;…...

【2024.10.22练习】机器人塔

题目描述 题目分析 由于数据小&#xff0c;直接考虑DFS搜索底层所有排列组合。 我的代码 需要注意&#xff1a;这个数据有点漏洞的是题干声明NM<231&#xff0c;但实际上有个测试点是等于231的。 一开始在build_tower&#xff08;&#xff09;函数中建完整个塔再判定是否…...

酒店预订订房小程序源码系统 多酒店入驻+打造类似美团的酒店模式 带完整的安装代码包以及搭建部署教程

系统概述 随着移动互联网的普及&#xff0c;小程序因其轻量级、无需下载安装、即用即走的特点&#xff0c;迅速成为各行业的标配。对于酒店预订行业而言&#xff0c;小程序不仅能够有效提升用户体验&#xff0c;还能降低运营成本&#xff0c;提高转化率。本源码系统正是基于这…...

springboot037基于SpringBoot的墙绘产品展示交易平台的设计与实现(论文+源码)_kaic

毕 业 设 计&#xff08;论 文&#xff09; 题目&#xff1a;墙绘产品展示交易平台设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本墙绘产品展示…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

铭豹扩展坞 USB转网口 突然无法识别解决方法

当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

[USACO23FEB] Bakery S

题目描述 Bessie 开了一家面包店! 在她的面包店里&#xff0c;Bessie 有一个烤箱&#xff0c;可以在 t C t_C tC​ 的时间内生产一块饼干或在 t M t_M tM​ 单位时间内生产一块松糕。 ( 1 ≤ t C , t M ≤ 10 9 ) (1 \le t_C,t_M \le 10^9) (1≤tC​,tM​≤109)。由于空间…...

__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.

这个警告表明您在使用Vue的esm-bundler构建版本时&#xff0c;未明确定义编译时特性标志。以下是详细解释和解决方案&#xff1a; ‌问题原因‌&#xff1a; 该标志是Vue 3.4引入的编译时特性标志&#xff0c;用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...