【leetcode|哈希表、动态规划】最长连续序列、最大子数组和
目录
最长连续序列
解法一:暴力枚举
复杂度
解法二:优化解法一省去二层循环中不必要的遍历
复杂度
最大子数组和
解法一:暴力枚举
复杂度
解法二:贪心
复杂度
解法三:动态规划
复杂度
最长连续序列
输入输出示例:
解法一:暴力枚举
两层循环,第一层循环是遍历整个数组;第二层循环的目的是得到最长连续序列时间复杂度极高,效率低下。
1、如果不使用哈希表在枚举过程中查找nums[i]+1时要通过遍历整个数组来进行,因此时间复杂度是O(n^2)
2、使用哈希表枚在举过程中虽说哈希表查找数据的时间复杂度是O(1),但第二次循环仍然需要执行多次,最坏的情况下其时间复杂度也会接近O(n^2)
class Solution {
public:int longestConsecutive(vector<int>& nums) {if(0 == nums.size()) //注意:需要考虑nums为空的情况,此时的最长连续序列就是0return 0;unordered_set<int> hashtable;int max_length = INT_MIN;for(const auto& e:nums) //使用哈希表去重数据hashtable.emplace(e);for(const auto& e:hashtable){int tmp = e;int cnt = 1;while(hashtable.count(++tmp))++cnt;max_length = std::max(max_length,cnt);}return max_length;}
};
复杂度
时间复杂度: O(n^2)
空间复杂度:O(n)
解法二:优化解法一省去二层循环中不必要的遍历
class Solution {
public:int longestConsecutive(vector<int>& nums) {if(0 == nums.size())return 0;int size = nums.size();int max_length = 0;unordered_set<int> hashtable;for(const auto& e:nums)hashtable.insert(e);for(const auto& e:hashtable){if(!hashtable.count(e-1))//只在哈希表中找连续序列的第一个数{int cnt = 1;int tmp = e;while(hashtable.count(++tmp))++cnt;max_length = std::max(max_length,cnt);}}return max_length;}
};
复杂度
时间复杂度:O(n)
空间复杂度:O(n)
最大子数组和
输入输出示例
解法一:暴力枚举
两层循环,定义一个max_sum变量,第二层循环中定义一个tmp变量用来记录第二层循环中连续子数组的和。
lass Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();int max_sum = INT_MIN;for(int i = 0;i<size;++i){int tmp = 0; //用来记录连续子数组的和for(int j = i;j<size;++j){tmp += nums[j];max_sum = std::max(max_sum,tmp);}}return max_sum;}
};
该暴力枚举会超出时间限制,不适合。
复杂度
时间复杂度:O(n^2)
空间复杂度:O(1)
解法二:贪心
class Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();int max_sum = nums[0]; //考虑到数组nums只有一个元素的时候,加上题目限制:子数组中至少包含一个元素int tmp = nums[0];for(int i = 1;i<size;++i){if(tmp > 0)tmp += nums[i];elsetmp = nums[i];max_sum = std::max(max_sum,tmp);}return max_sum;}
};
复杂度
时间复杂度:O(n)
空间复杂度:O(1)
解法三:动态规划
定义一个dp数组,dp[i]表示以 i 位置结尾的子数组的最大和,利用已经有的dp[i-1]值求dp[i]。
class Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();vector<int> dp(size);//dp[i]表示以i位置结尾的连续子数组的最大和dp[0] = nums[0];int max_sum = dp[0];//当size == 1的时候程序不进入下面循环,直接返回nums[0]for(int i = 1;i<size;++i){if(dp[i-1]>0)dp[i] = dp[i-1] + nums[i];elsedp[i] = nums[i];max_sum = std::max(max_sum,dp[i]);}return max_sum;}
};
复杂度
时间复杂度:O(n)
空间复杂度:O(n)
使用滚动数组将空间复杂度优化为O(1):
class Solution {
public:int maxSubArray(vector<int>& nums) {int size = nums.size();//vector<int> dp(size);//dp[i]表示以i位置结尾的连续子数组的最大和int dp1 = nums[0];int dp2 = 0;int max_sum = dp1;for(int i = 1;i<size;++i){if((dp1+nums[i]) > nums[i])dp2 = dp1 + nums[i];elsedp2 = nums[i];max_sum = std::max(max_sum,dp2);dp1 = dp2;//更新dp1}return max_sum;}
};
相关文章:

【leetcode|哈希表、动态规划】最长连续序列、最大子数组和
目录 最长连续序列 解法一:暴力枚举 复杂度 解法二:优化解法一省去二层循环中不必要的遍历 复杂度 最大子数组和 解法一:暴力枚举 复杂度 解法二:贪心 复杂度 解法三:动态规划 复杂度 最长连续序列 输入输…...

【人工智能】掌握深度学习中的时间序列预测:深入解析RNN与LSTM的工作原理与应用
深度学习中的循环神经网络(RNN)和长短时记忆网络(LSTM)在处理时间序列数据方面具有重要作用。它们能够通过记忆前序信息,捕捉序列数据中的长期依赖性,广泛应用于金融市场预测、自然语言处理、语音识别等领域…...

今日开放!24下软考机考「模拟练习平台」操作指南来啦!
2024年下半年软考机考模拟练习平台今日开放,考生可以下载模拟作答系统并登录后进行模拟练习,熟悉答题流程及操作方法。 一、模拟练习时间 2024年下半年软考机考模拟练习平台开放时间为2024年10月23日9:00至11月6日17:00,共15天。 考生可以在…...
合并.md文档
需求:将多个.md文档合并成一个.md文档。 方法一:通过 type 命令 参考内容:多个md文件合并 步骤: 把需要合并的 .md 文档放入到一个文件夹内。修改需要合并的 .md 文档名,可以在文档名前加上 1.2.3 来表明顺序&#x…...

10月18日笔记(基于系统服务的权限提升)
系统内核漏洞提权 当目标系统存在该漏洞且没有更新安全补丁时,利用已知的系统内核漏洞进行提权,测试人员往往可以获得系统级别的访问权限。 查找系统潜在漏洞 手动寻找可用漏洞 在目标主机上执行以下命令,查看已安装的系统补丁。 system…...

【STM32 Blue Pill编程实例】-控制步进电机(ULN2003+28BYJ-48)
控制步进电机(ULN2003+28BYJ-48) 文章目录 控制步进电机(ULN2003+28BYJ-48)1、步进电机介绍2、ULN2003步进电机驱动模块3、硬件准备及接线4、模块配置3.1 定时器配置3.2 ULN2003输入引脚配置4、代码实现在本文中,我们将介使用 STM32Cube IDE 使用 ULN2003 电机驱动器来控制28B…...
监督学习、无监督学习、半监督学习、强化学习、迁移学习、集成学习分别是什么对应什么应用场景
将对监督学习、无监督学习、半监督学习、强化学习、迁移学习和集成学习进行全面而详细的解释,包括定义、应用场景以及具体的算法/模型示例。 1. 监督学习 (Supervised Learning) 定义:监督学习是一种机器学习方法,其中模型通过已知的输入数…...
WSL2 Linux子系统调整存储位置
WSL2 默认不支持修改Linux 安装路径,官方提供的方式,只有通过导出、导入的方式实现Linux子系统的迁移。 修改注册表的方式官方不推荐,没有尝试过,仅提供操作方式(自行评估风险,建议备份好数据) 1. 打开 **注册表编辑器…...
Shiro授权
一、定义与作用 授权(Authorization),也称为访问控制,是确定是否允许用户/主体做某事的过程。在Shiro安全框架中,授权是核心组件之一,它负责控制用户对系统资源的访问权限,确保用户只能访问其被…...

算法题总结(十五)——贪心算法(下)
1005、K 次取反后最大化的数组和 给你一个整数数组 nums 和一个整数 k ,按以下方法修改该数组: 选择某个下标 i 并将 nums[i] 替换为 -nums[i] 。 重复这个过程恰好 k 次。可以多次选择同一个下标 i 。 以这种方式修改数组后,返回数组 可…...

《深度学习》【项目】自然语言处理——情感分析 <下>
目录 一、了解项目 1、任务 2、文件内容 二、续接上篇内容 1、打包数据,转化Tensor类型 2、定义模型,前向传播函数 3、定义训练、测试函数 4、最终文件格式 5、定义主函数 运行结果: 一、了解项目 1、任务 对微博评论信息的情感分…...
postgresql是国产数据库吗?
PostgreSQL不是国产数据库。但是PostgreSQL对国产数据库的发展有着重要影响,许多国产数据库产品是基于PostgreSQL进行二次开发的。 PostgreSQL的开源特性也是其受欢迎的重要原因之一。开源意味着任何人都可以查看、修改和使用PostgreSQL的源代码。这使得PostgreSQL…...

软考——计算机网络概论
文章目录 🕐计算机网络分类1️⃣通信子网和资源子网2️⃣网络拓扑结构3️⃣ 计算机网络分类3:LAN MAN WAN4️⃣其他分类方式 🕑OSI 和 TCP/IP 参考模型1️⃣OSI2️⃣TCP/IP🔴TCP/IP 参考模型对应协议 3️⃣OSI 和 TCP/IP 模型对应…...

01 设计模式-创造型模式-工厂模式
工厂模式(Factory Pattern)是 Java 中最常用的设计模式之一,它提供了一种创建对象的方式,使得创建对象的过程与使用对象的过程分离。 工厂模式提供了一种创建对象的方式,而无需指定要创建的具体类。 通过使用工厂模式…...

ComnandLineRunner接口, ApplcationRunner接口
ComnandLineRunner接口, ApplcationRunner接口 介绍: 这两个接口都有一个run方法,执行时间在容器对象创建好后,自动执行run ( )方法。 创建容器的同时会创建容器中的对象,同时会把容器中的对象的属性赋上值: 举例&…...
Swift用于将String拆分为数组的components与split的区别
根据特定分隔符拆分字符串 在 Swift 中,components(separatedBy:) 和 split(separator:) 都可以用于将字符串拆分为数组,但它们有一些关键区别。下面将从返回值类型、性能和功能等角度进行对比。 1. 返回值类型 components(separatedBy:):…...
docker之redis安装(项目部署准备)
创建网络 docker network create net-ry --subnet172.68.0.0/16 --gateway172.68.0.1 redis安装 #创建目录 mkdir -p /data/redis/{conf,data} #上传redis.conf文件到/data/redis/conf文件夹中 #对redis.conf文件修改 # bind 0.0.0.0 充许任何主机访问 # daemonize no #密码 # …...

使用Maven前的简单准备
目录 一、Maven的准备 1、安装jdk1.8或以上版本 2、下载Maven 3、安装Maven 二、Maven目录的分析 三、Maven的环境变量配置 1、设置MAVEN_HOME环境变量 2、设置Path环境变量 3、验证配置是否完成 一、Maven的准备 1、安装jdk1.8或以上版本 jdk的安装 2、下载Maven…...

Java | Leetcode Java题解之第494题目标和
题目: 题解: class Solution {public int findTargetSumWays(int[] nums, int target) {int sum 0;for (int num : nums) {sum num;}int diff sum - target;if (diff < 0 || diff % 2 ! 0) {return 0;}int neg diff / 2;int[] dp new int[neg …...

阅读笔记 Contemporary strategy analysis Chapter 13
来源:Robert M. Grant - Contemporary strategy analysis (2018) Chapter 13 Implementing Corporate Strategy: Managing the Multibusiness Firm Ⅰ Introduction and Objectives 多业务公司 multibusiness firm由多个独立的业务部门组成,如业务单元…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...