yjs机器学习数据操作01——数据的获取、可视化
数据的获取
1.库与模块:
import sklearnfrom sklearn import datasets
2.数据集获取的API及解释
对于sklearn的数据获取,主要分为两大部分,分别是“小数据集的获取——load_xxx”和“大数据集的获取fetch_xxx”
a.datasets.load_xxx():
load_xxx:这些数据集通常加载到内存中,适合快速实验和模型验证
常见的有
load_iris()
:加载经典的鸢尾花(Iris)数据集。load_digits()
:加载手写数字数据集。load_wine()
:加载葡萄酒分类数据集。load_breast_cancer()
:加载乳腺癌分类数据集。load_diabetes()
:加载糖尿病回归数据集。load_linnerud()
:加载 Linnerud 数据集(多输出回归)。
b.datasets.fetch_xxx()
fetch_xxx:
从网络下载数据集,适用于较大规模的真实世界数据集常见的有:
fetch_20newsgroups()
:加载20类新闻组数据集,用于文本分类任务。fetch_olivetti_faces()
:加载 Olivetti 人脸数据集,用于图像处理任务。fetch_lfw_people()
:加载 LFW(Labelled Faces in the Wild)人脸识别数据集。fetch_lfw_pairs()
:加载 LFW 人脸对数据集,用于人脸匹配。fetch_covtype()
:加载 Covertype 数据集,用于分类问题。fetch_rcv1()
:加载 RCV1(Reuters Corpus Volume I)数据集
3.数据集的属性
import sklearn
from sklearn import datasets
data=datasets.load_iris()"""1.数据集的具体数据/本质上也是特征值:"""
data["data"] """2.数据集的特征名:"""
data.feature_names"""3.数据集的目标名称/标签名称"""
data.target_names"""4.数据集的目标值/标签值"""
data.target"""5.数据集的总体描述"""
data.DESCR
数据的可视化
1.库与模块:
import seaborn as sns
#seaborn是对matplotlib的更高级api的封装
2.可视化的API及解释——lmplot
sns.lmplot(x= , y= , data= ,hue= , fit_reg=True/False....)
参数说明:
x/y=... : 是指定画图时的x坐标是啥,y是啥,这里不是将其命名,而是指出以什么参数为x、y轴 ;一般是某一个“属性”,即特征
························································································································
data= :这里指定数据,并且数据一定要是DataFrame结构
这里就涉及到将load_或者fetch获得的数据结构进行变化:
Data_load=pd.DataFrame(data["data"],columns=data.feature_names)
··························································································································
hue= :这里是指按照什么进行分类,
data【“data”】获取的数据一般是这样的:
一般我们把它再加一列,就是将每个样本的目标值,即标签加入进去
Data_load["target"]=data.target
所以这里的hue一般这样写:
hue=Data_load.target或者["target"]
··························································································································
fit_reg=T/F:是否进行线性拟合
整体代码:
# 将数据用seaborn库进行可视化 data_1=pd.DataFrame(data=dataSet1["data"],columns=dataSet1.feature_names) data_1["target"]=dataSet1.target print(data_1) print(data_1.columns[0]) sns.lmplot(x=data_1.columns[0], y=data_1.columns[1], data=data_1, hue="target") plt.xlabel("cols1") plt.ylabel("cols2") plt.title("鸢尾花") plt.show()
结果:
注意图的相关显示的属性,如x坐标名称,y坐标名称,图的题目等是同matplotlib那个一样,都是 “plt.xxx”
最后的展示也是“plt.show()”
整体代码:
import matplotlib.pyplot as plt import pandas as pd import sklearn import seaborn as sns from sklearn import datasets import numpy as np plt.rcParams['font.family'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = FalsedataSet1 = datasets.load_iris() print("鸢尾花数据集如下:") print(dataSet1) print("鸢尾花的属性:") print("特征数据数组:") print(dataSet1["data"]) print("标签值:") print(dataSet1.target) print("标签名:") print(dataSet1.target_names) print("特征名:") print(dataSet1.feature_names) print("数据描述:") print(dataSet1.DESCR)# 将数据用seaborn库进行可视化 data_1=pd.DataFrame(data=dataSet1["data"],columns=dataSet1.feature_names) data_1["target"]=dataSet1.target print(data_1) print(data_1.columns[0]) sns.lmplot(x=data_1.columns[0], y=data_1.columns[1], data=data_1, hue="target") plt.xlabel("cols1") plt.ylabel("cols2") plt.title("鸢尾花") plt.show()
结果:(截取部分片段)
相关文章:

yjs机器学习数据操作01——数据的获取、可视化
数据的获取 1.库与模块: import sklearnfrom sklearn import datasets 2.数据集获取的API及解释 对于sklearn的数据获取,主要分为两大部分,分别是“小数据集的获取——load_xxx”和“大数据集的获取fetch_xxx” a.datasets.load_xxx(): …...

w~自动驾驶合集9
我自己的原文哦~ https://blog.51cto.com/whaosoft/12320882 #自动驾驶数据集全面调研 自动驾驶技术在硬件和深度学习方法的最新进展中迅速发展,并展现出令人期待的性能。高质量的数据集对于开发可靠的自动驾驶算法至关重要。先前的数据集调研试图回顾这些数据集&…...
232. 用栈实现队列 【复习链表】-用自定义链表实现栈 用栈实现队列
232. 用栈实现队列 已解答 简单 相关标签 相关企业 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty): 实现 MyQueue 类: void push(int x) 将元素 x 推到队列的末尾int pop() 从队…...
G-Set(增长集合,Grow-Only Set)
一、概念 G-Set(增长集合,Grow-Only Set)是一种冲突自由复制数据类型(Conflict-Free Replicated Data Type, CRDT),用于在分布式系统中同步和合并数据,而不需要中央协调器。G-Set 支持两种操作…...
《Vue.js 组件开发秘籍:从基础到高级》
Vue.js 组件开发是构建 Vue 应用程序的核心方法之一。以下是对 Vue.js 组件开发的介绍: 一、什么是 Vue.js 组件? 在 Vue.js 中,组件是可复用的 Vue 实例,它们封装了特定的功能和用户界面。每个组件都有自己独立的模板、逻辑和样…...

【Next.js 项目实战系列】03-查看 Issue
原文链接 CSDN 的排版/样式可能有问题,去我的博客查看原文系列吧,觉得有用的话,给我的库点个star,关注一下吧 上一篇【Next.js 项目实战系列】02-创建 Issue 查看 Issue 展示 Issue 本节代码链接 首先使用 prisma 获取所有…...

Android Settings 设置项修改
Settings 设置项 在 Android 系统上,WRITE_SETTINGS 这个权限从 API 1 就已经开始有了。 通过在 app 中设置权限 android.permission.WRITE_SETTINGS 允许 app 读/写 系统设置。 在官方文档的描述中,还有一段注意事项: Note: If the app targets API level 23 or higher,…...
Windows远程桌面到Ubuntu
在Ubuntu系统中,默认情况下root账户是被禁用的,为了安全起见,建议不要直接使用root账户登录图形界面。但是,如果出于特定的管理或维护需求,您可以按照以下步骤启用和使用root账户登录图形界面: 启用root账户…...
解释 RESTful API,以及如何使用它构建 web 应用程序(AI)
RESTful API(Representational State Transfer)是一种基于HTTP协议的软件架构风格,用于构建可扩展、可维护和可重用的网络服务。 RESTful API的特点包括: 1. 基于资源:每个API都代表一个或多个资源,这些资…...
NestJs:处理身份验证和授权
使用 Nest.js 开发项目时,处理身份验证和授权是常见的需求,可以采用以下架构和实现方式。 架构 用户认证模块 (Auth Module): 服务 (Service): 处理用户登录逻辑,生成 JWT(JSON Web Token),以及验证 token…...

Java EE规范
1、简介 Java EE的全称是Java Platform, Enterprise Edition。早期Java EE也被称为J2EE,即Java 2 Platform Enterprise Edition的缩写。从J2EE1.5以后,就改名成为Java EE。一般来说,企业级应用具备这些特征:1、数据量特别大&…...
Ollama及其Open-WebUI部署更新
目录 1 安装ollama 2 安装Open-WebUI 2.1 不使用容器安装open-webui 2.2 使用Docker安装open-webui 2.3 基于docker升级open-webui 1 安装ollama curl -fsSL https://ollama.com/install.sh | sh启动、关闭ollama systemctl start ollama systemctl stop ollama sys…...
手写 | 设计模式
这里写目录标题 观察者 vs 发布订阅 观察者 vs 发布订阅 参考代码 观察者模式,一对多,两个角色:观察者observer和被观察者/主题Subject。 Subject维护一个数组,记录有哪些Observer;通过调自身的noticefy方法…...
基于深度学习的地形分类与变化检测
基于深度学习的地形分类与变化检测是遥感领域的一个关键应用,利用深度学习技术从卫星、无人机等地球观测平台获取的遥感数据中自动分析地表特征,并识别地形的变化。这一技术被广泛应用于城市规划、环境监测、灾害预警、土地利用变化分析等领域。 1. 地形…...

进程、线程、协程
文章目录 前言一、易混概念1.1 同步vs异步1.2 并发vs并行 二、进程(Process)2.1进程概念2.2 进程三个基本状态2.3多进程方式编程 三、线程(Thread)3.1 线程的引入3.2 线程概念3.3 多线程编程3.4 GIL对多线程的影响3.5 GIL是否意味…...
嵌入式工程师成长之路(1)——元件基础(完整版)
系列文章目录 1.元件基础 2.电路设计 3.PCB设计 4.元件焊接 5.板子调试 6.程序设计 7.算法学习 8.编写exe 9.检测标准 10.项目举例 11.职业规划 文章目录 前言一、认识元件①、认识元件②、认识封装二、电阻1.上拉电阻与下拉电阻①、定义②、应用③、阻值选择④、因上下拉电…...
在Ubuntu 20.04 上安装 CoppeliaSim
在 Ubuntu 20.04 上安装 CoppeliaSim Edu V4.6.0 rev18 的步骤如下: 1. 下载安装文件: 首先,确保您已经下载了 CoppeliaSim_Edu_V4_6_0_rev18_Ubuntu20_04.tar.xz 文件。您可以从 Coppelia Robotics 的官方网站下载。 2. 解压缩文件: 打开终端&#…...
pulseaudio的相关操作(二)
这篇文章主要介绍pulseaudio playback的相关API,pulseaudio playback的具体实例可以参考[2]。如果用pulseaudio实现playback,简单地说就是创建一个playback stream,然后指定这个stream的sink,再定期的向这个stream中写数据。 mai…...
Selenium自动化测试工具
一 .Selenium简介 是一个用于Web应用程序测试的工具 Selenium的核心功能之一是测试软件在不同浏览器和操作系统上的兼容性,确保软件功能与用户需求的一致性,提升用户体验。 自动化脚本生成与执行 Selenium支持自动录制用户操作并生成多种编程语言的测…...

优化UVM环境(九)-将interface文件放在env pkg外面
书接上回: 优化UVM环境(八)-整理project_common_pkg文件 My_env_pkg.sv里不能包含interface,需要将my_intf.sv文件放在pkg之外...

深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
如何配置一个sql server使得其它用户可以通过excel odbc获取数据
要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据,你需要完成以下配置步骤: ✅ 一、在 SQL Server 端配置(服务器设置) 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到:SQL Server 网络配…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...

Linux基础开发工具——vim工具
文章目录 vim工具什么是vimvim的多模式和使用vim的基础模式vim的三种基础模式三种模式的初步了解 常用模式的详细讲解插入模式命令模式模式转化光标的移动文本的编辑 底行模式替换模式视图模式总结 使用vim的小技巧vim的配置(了解) vim工具 本文章仍然是继续讲解Linux系统下的…...

如何做好一份技术文档?从规划到实践的完整指南
如何做好一份技术文档?从规划到实践的完整指南 🌟 嗨,我是IRpickstars! 🌌 总有一行代码,能点亮万千星辰。 🔍 在技术的宇宙中,我愿做永不停歇的探索者。 ✨ 用代码丈量世界&…...

第2篇:BLE 广播与扫描机制详解
本文是《BLE 协议从入门到专家》专栏第二篇,专注于解析 BLE 广播(Advertising)与扫描(Scanning)机制。我们将从协议层结构、广播包格式、设备发现流程、控制器行为、开发者 API、广播冲突与多设备调度等方面,全面拆解这一 BLE 最基础也是最关键的通信机制。 一、什么是 B…...