python画图|曲线动态输出
【1】引言
前序教程中的曲线动态输出,其实是把曲线按照左右移动的形式输出(波的传递形式)。
python画图|曲线动态输出基础教程_python 动态曲线-CSDN博客
但有些时候我们更期待的是曲线不移动,随着自变量的增加而输出因变量,因此这是两种曲线输出教程。
基于上述区别说明,很有必要对后一种方法进行探索。
【2】官网教程
首先点击下述链接可以直达官网,我们将会看到期待的动态输出曲线。
https://matplotlib.org/stable/gallery/animation/animate_decay.html#sphx-glr-gallery-animation-animate-decay-py
基于此我们对官网教程进行解读。
【3】代码解读
首先引入了好几个模块:
import itertools #引入itertools模块,可实现变量无限输出import matplotlib.pyplot as plt #引入画图模块 import numpy as np #引入计算模块import matplotlib.animation as animation #引入动画模块
这里的itertools模块第一次引入,可以实现比自变量的无限输出。
然后先定义了一个变量产生函数,并将自变量和因变量的关系进行了定义:
def data_gen(): #自定义函数,使用itertools.count()模块for cnt in itertools.count(): #创造一个从0开始,步长是1的无线循环,输出结果全部赋值给cntt = cnt / 10 # 计算cnt/10后赋值给tyield t, np.sin(2*np.pi*t) * np.exp(-t/10.) #返回t, np.sin(2*np.pi*t) * np.exp(-t/10.)
之后再定义了变量的范围:
def init(): #自定义函数ax.set_ylim(-1.1, 1.1) #设置Y轴范围ax.set_xlim(0, 1) #设置X轴范围del xdata[:] #定义一个空矩阵xdata[]del ydata[:] #定义一个空矩阵ydata[]line.set_data(xdata, ydata) #设置曲线的自变量和因变量return line, #返回曲线的数值
其实直到此时,才完成要画图对应各个变量的定义,并且自变量和因变量还是空矩阵。
完成变量的初步定义之后,定义要画图:
fig, ax = plt.subplots() #定义要画图 line, = ax.plot([], [], lw=2) #定义要画曲线 ax.grid() #给输出曲线增加网格 xdata, ydata = [], [] #定义xdata和ydata为空矩阵
在前述的定义中,自变量一直未实质赋值,接下来通过append()函数进行赋值,并修改了X轴的范围:
def run(data): #自定义函数# update the datat, y = data #定义变相t和yxdata.append(t) #xdata为t的所有取值ydata.append(y) #ydata为y的所有取值xmin, xmax = ax.get_xlim() #X轴的最小值和最大值(xmin和xmax)从xlim()中取出if t >= xmax: #当自变量超出X轴上限ax.set_xlim(xmin, 2*xmax) #将X轴取值扩大两倍ax.figure.canvas.draw() #输出图形line.set_data(xdata, ydata) #定义曲线变量return line, #返回曲线值
最后实现动态输出:
ani = animation.FuncAnimation(fig, run, data_gen, interval=100, init_func=init,save_count=100) #输出动画 plt.show() #输出图形
此时获得的输出结果为:

图1
此时对应的完整代码为:
import itertools #引入itertools模块,可实现变量无限输出import matplotlib.pyplot as plt #引入画图模块
import numpy as np #引入计算模块import matplotlib.animation as animation #引入动画模块def data_gen(): #自定义函数,使用itertools.count()模块for cnt in itertools.count(0.,0.5): #创造一个从0开始,步长是1的无线循环,输出结果全部赋值给cntt = cnt / 10 # 计算cnt/10后赋值给tyield t, np.sin(2*np.pi*t) * np.exp(-t/10.) #返回t, np.sin(2*np.pi*t) * np.exp(-t/10.)def init(): #自定义函数ax.set_ylim(-1.1, 1.1) #设置Y轴范围ax.set_xlim(0, 1) #设置X轴范围del xdata[:] #定义一个空矩阵xdata[]del ydata[:] #定义一个空矩阵ydata[]line.set_data(xdata, ydata) #设置曲线的自变量和因变量return line, #返回曲线的数值fig, ax = plt.subplots() #定义要画图
line, = ax.plot([], [], lw=2) #定义要画曲线
ax.grid() #给输出曲线增加网格
xdata, ydata = [], [] #定义xdata和ydata为空矩阵def run(data): #自定义函数# update the datat, y = data #定义变相t和yxdata.append(t) #xdata为t的所有取值ydata.append(y) #ydata为y的所有取值xmin, xmax = ax.get_xlim() #X轴的最小值和最大值(xmin和xmax)从xlim()中取出if t >= xmax: #当自变量超出X轴上限ax.set_xlim(xmin, 2*xmax) #将X轴取值扩大两倍ax.figure.canvas.draw() #输出图形line.set_data(xdata, ydata) #定义曲线变量return line, #返回曲线值# Only save last 100 frames, but run forever
ani = animation.FuncAnimation(fig, run, data_gen, interval=100, init_func=init,save_count=100) #输出动画
plt.show() #输出图形
#ani.save('ani.gif') #保存动画
实际上,当在PC上运行上述代码时,输出的图形是无限的,不会停止。

图2
这是因为itertools.count()函数并没有给出任何停止输出自变量的信号,因此有必要设置输出停止代码。
【3】代码改写
在itertools.count()函数下方增加break操作:
if(t>20):break
此时的完整代码为:
import itertools #引入itertools模块import matplotlib.pyplot as plt #引入画图模块
import numpy as np #引入计算模块import matplotlib.animation as animation #引入动画模块def data_gen(): #自定义函数,使用itertools.count()模块for cnt in itertools.count(0.,0.5): #创造一个从0开始,步长是1的无线循环,输出结果全部赋值给cntt = cnt / 10 # 计算cnt/10后赋值给tyield t, np.sin(2*np.pi*t) * np.exp(-t/10.) #返回t, np.sin(2*np.pi*t) * np.exp(-t/10.)if(t>20):breakdef init(): #自定义函数ax.set_ylim(-1.1, 1.1) #设置Y轴范围ax.set_xlim(0, 1) #设置X轴范围del xdata[:] #定义一个空矩阵xdata[]del ydata[:] #定义一个空矩阵ydata[]line.set_data(xdata, ydata) #设置曲线的自变量和因变量return line, #返回曲线的数值fig, ax = plt.subplots() #定义要画图
line, = ax.plot([], [], lw=2) #定义要画曲线
ax.grid() #给输出曲线增加网格
xdata, ydata = [], [] #定义xdata和ydata为空矩阵def run(data): #自定义函数# update the datat, y = data #定义变相t和yxdata.append(t) #xdata为t的所有取值ydata.append(y) #ydata为y的所有取值xmin, xmax = ax.get_xlim() #X轴的最小值和最大值(xmin和xmax)从xlim()中取出if t >= xmax: #当自变量超出X轴上限ax.set_xlim(xmin, 2*xmax) #将X轴取值扩大两倍ax.figure.canvas.draw() #输出图形line.set_data(xdata, ydata) #定义曲线变量return line, #返回曲线值# Only save last 100 frames, but run forever
ani = animation.FuncAnimation(fig, run, data_gen, interval=0.10, init_func=init,save_count=1000) #输出动画
ani.save('ani-1000.gif') #保存动画
plt.show() #输出图形
运行代码后将发现,自变量最大值为20:

图3
【4】总结
探索了曲线动态输出的教程,掌握了输出范围等的设置技巧。
相关文章:
python画图|曲线动态输出
【1】引言 前序教程中的曲线动态输出,其实是把曲线按照左右移动的形式输出(波的传递形式)。 python画图|曲线动态输出基础教程_python 动态曲线-CSDN博客 但有些时候我们更期待的是曲线不移动,随着自变量的增加而输出因变量&am…...
电子商务类型
常见电子商务类型及其代表性的例子: B2B(Business to Business) 定义:B2B 模式是指企业与企业之间的商业交易。在这种模式下,企业通过电子商务平台相互提供产品或服务。 特点: 大宗交易:通常…...
vue elementui el-table实现增加行,行内编辑修改
需求: 前端进行新增表单时,同时增加表单的明细数据。明细数据部分,可进行行编辑。 效果图: <el-card><div slot"header"><span style"font-weight: bold">外来人员名单2</span><…...
1. Redis简介与安装
1.1 什么是Redis Redis(Remote Dictionary Server)是一个开源的、基于内存的数据结构存储系统,支持多种数据结构,如字符串、列表、集合、有序集合和哈希。它不仅能作为一个高效的缓存工具,还能作为消息队列、分布式锁和…...
Redis的持久化存储和集群管理操作
Redis 的持久化存储和集群 一、引言 Redis 是一个开源的内存数据结构存储系统,被广泛应用于缓存、消息队列、排行榜等场景。然而,由于数据存储在内存中,一旦服务器重启或出现故障,数据就会丢失。为了解决这个问题,Re…...
Auto-encoder(自编码器)
Auto-encoder(自编码器) 1 基本概念 自编码就和之前的cycle GAN的概念很像,假設你有非常大量的圖片,在 Auto-Encoder 裡面你有兩個 Network,一個叫做 Encoder,一個叫做 Decoder,他們就是兩個 N…...
Vue+sortable+el-table表格排序使用指南
前言 这两天遇到一个需求:在点击【设置优先级】的按钮后弹出关于玩法类型的table,点击【排序】按钮可以后可以进行排序。由于组内使用的组件库是 element-ui,那我首先就想到了使用 el-table组件,但奈何其版本原因不能相应的拖拽排…...
表数据删一半,为什么表文件大小不变?
参数innodb_file_per_table 这个参数设置为ON,表示每个表数据单独存在一个文件中,这时如果执行drop命令,系统会直接删除表文件。 这个参数设置为off时,所有表的数据和索引都存在共享的.ibdata文件,即使表删掉了&…...
MoCoOp: Mixture of Prompt Learning for Vision Language Models
文章汇总 当前的问题 1)数据集风格变化。 如图1所示,对于一个数据集,单个软提示可能不足以捕获数据中呈现的各种样式。同一数据集中的不同实例可能与不同的提示符兼容。因此,更**自然的做法是使用多个提示来充分表示这些变化**。 2)过拟合…...
YOLOv8 onnx 部署
本文是在win10系统下进行yolov8目标检测推理的过程记录。 yolov8 已经集成到OpenCV,可以通过两种方式调用,一种是直接通过OpenCV 调用,另外一种是通过onnx runtime(ort)调用。 1、安装cuda 、opencv 等依赖库,具体可以参考 Win1…...
在文件里引用目录文件下的静态资源图片不显示
问题:两种图片路径的指定方式,第一种能展示图片但第二种不能 两个 示例中,图片展示的差异。 在第一个示例中,图片路径是硬编码在 标签的 src 属性中的: <img src"../../assets/img/header01.png" style…...
vue使用 jsplumb 生成流程图
1、安装jsPlumb: npm install jsplumb 2、 在使用的 .vue 文件中引入 import { jsPlumb } from "jsplumb"; 简单示例: 注意:注意看 id 为"item-3"和"item-9"那条数据的连线配置 其中有几个小图片&#x…...
攻坚金融关键业务系统,OceanBase亮相2024金融科技大会
10月15-16日,第六届中新数字金融应用博览会与2024金融科技大会(简称“金博会”)在苏州工业园区联合举办。此次大会融合了国家级重要金融科技资源——“中国金融科技大会”,围绕“赋能金融高质量发展,金融科技创新前行”…...
《纳瓦尔宝典:财富和幸福指南》读书随笔
最近在罗胖的得到听书中听到一本书,感觉很有启发,书的名字叫《纳瓦尔宝典》,从书名上看给人的感觉应该财富知识类、鸡汤爆棚哪类。纳瓦尔,这个名字之前确实没有听说过,用一句话介绍一下,一个印度裔的硅谷中…...
C++ | STL | 侯捷 | 学习笔记
C | STL | 侯捷 | 学习笔记 文章目录 C | STL | 侯捷 | 学习笔记1 STL概述1.1 头文件名称1.2 STL基础介绍1.3 typename 2 OOP vs. GP3 容器3.1 容器结构分类3.2 序列式容器3.2.1 array测试深度探索 3.2.2 vector测试深度探索 3.2.3 list测试深度探索 3.2.4 forward_list测试深度…...
C函数基础
C语言中的函数教程 在C语言中,函数是一段组织好的、可重复使用的、用于执行特定任务的代码。函数可以提高代码的模块化和可重用性。以下是关于C语言中函数的详细教程。 1. 函数的定义与声明 1.1 函数定义 函数定义包括函数头和函数体。函数头包括函数返回类型、…...
html和css实现页面
任务4 html文件 任务5 htm文件 css文件 任务6 html文件 css文件 任务7 html文件 css文件...
Github_以太网开源项目verilog-ethernet代码阅读与移植(八)——移植工程分享
实验背景 第六篇计划是写项目中各个模块的实现和约束文件的编写,有的小伙伴有裁剪工程的需要,就先分享一个半成品以供参考,由于笔者水平有限,错误肯定会有,望批评指正。 实验内容 移植工程共享 实验步骤 工程一部…...
【大模型实战篇】大模型分词算法BPE(Byte-Pair Encoding tokenization)及代码示例
词元化是针对自然语言处理任务的数据预处理中一个重要步骤,目的是将原始文本切分成模型可以识别和处理的词元序列。在大模型训练任务中,就是作为大模型的输入。传统的自然语言处理方法,如基于条件随机场的序列标注,主要采用基于词…...
低功耗4G模组LCD应用示例超全教程!不会的小伙伴看这篇就够了!
希望大家通过本文的介绍,学会LCD显示屏与Air780E开发板结合使用的方法。利用LCD显示屏,你可以为你的项目增加丰富的显示内容,提升用户体验。记住,实践出真知,赶快动手尝试吧!相信这篇教程对你有所帮助~ 本文…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
MySQL 知识小结(一)
一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库,分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷,但是文件存放起来数据比较冗余,用二进制能够更好管理咱们M…...
iview框架主题色的应用
1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题,无需引入,直接可…...
《Docker》架构
文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器,docker,镜像,k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
