偷懒总结篇|贪心算法|动态规划|单调栈|图论
由于这周来不及了,先过一遍后面的思路,具体实现等下周再开始详细写。
贪心算法
这个图非常好

122.买卖股票的最佳时机 II(妙,拆分利润)
把利润分解为每天为单位的维度,需要收集每天的正利润就可以,收集正利润的区间,就是股票买卖的区间,而我们只需要关注最终利润,不需要记录区间。


55. 跳跃游戏(妙,覆盖范围)
不用拘泥于每次究竟跳几步,而是看覆盖范围,覆盖范围内一定是可以跳过来的,不用管是怎么跳的。

45.跳跃游戏 II(难)
还是要看最大覆盖范围。
以最小的步数增加最大的覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最少步数!不用管具体是怎么跳的,不纠结于一步究竟跳一个单位还是两个单位。
这里需要统计两个覆盖范围,当前这一步的最大覆盖和下一步最大覆盖。
如果移动下标达到了当前这一步的最大覆盖最远距离了,还没有到终点的话,那么就必须再走一步来增加覆盖范围,直到覆盖范围覆盖了终点。


1005.K次取反后最大化的数组和(简单)
先让绝对值大的负数变为正数,当前数值达到最大;然后如果K依然大于0,只找数值最小的正整数进行反转。
- 第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小
- 第二步:从前向后遍历,遇到负数将其变为正数,同时K--
- 第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完
- 第四步:求和

将数组按照绝对值大小从大到小排序
nums = IntStream.of(nums).boxed().sorted((o1, o2) -> Math.abs(o2) - Math.abs(o1)).mapToInt(Integer::intValue).toArray();
对int[]数组元素求和
Arrays.stream(nums).sum()
int ans = 0;for (int num : nums) {ans += num;}
134. 加油站(妙)
(补充:for循环适合模拟从头到尾的遍历,而while循环适合模拟环形遍历,要善于使用while!)
当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。


135. 分发糖果(妙,2次贪心)
先确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。
两次贪心的策略:
- 一次是从左到右遍历,只比较右边孩子评分比左边大的情况。
- 一次是从右到左遍历,只比较左边孩子评分比右边大的情况。
分两个阶段
1、起点下标1 从左往右,只要 右边 比 左边 大,右边的糖果=左边 + 1
2、起点下标 ratings.length - 2 从右往左, 只要左边 比 右边 大,
此时 左边的糖果应该 取本身的糖果数(符合比它左边大)
和 右边糖果数 + 1 二者的最大值,这样才符合
它比它左边的大,也比它右边大



860.柠檬水找零(简单)
直接统计five,ten的count就好了
- 情况一:账单是5,直接收下。
- 情况二:账单是10,消耗一个5,增加一个10
- 情况三:账单是20,优先消耗一个10和一个5,如果不够,再消耗三个5

406.根据身高重建队列(难,妙,2次贪心)
本题有两个维度,h和k,看到这种题目一定要想如何确定一个维度,然后再按照另一个维度重新排列。
如果按照k来从小到大排序,排完之后,会发现k的排列并不符合条件,身高也不符合条件,两个维度哪一个都没确定下来。
那么按照身高h来排序呢,身高一定是从大到小排(身高相同的话则k小的站前面),让高个子在前面。
此时我们可以确定一个维度了,就是身高,前面的节点一定都比本节点高!
那么只需要按照k为下标重新插入队列就可以了


二维数据排序
// 身高从大到小排(身高相同k小的站前面)Arrays.sort(people, (a, b) -> {if (a[0] == b[0]) return a[1] - b[1]; // a - b 是升序排列,故在a[0] == b[0]的狀況下,會根據k值升序排列return b[0] - a[0]; //b - a 是降序排列,在a[0] != b[0],的狀況會根據h值降序排列});
Linkedlist.add()
Linkedlist.add(index, value),会将value插入到指定index里
452. 用最少数量的箭引爆气球(重叠区间)
重叠区间问题:本质就是更新区间的边界
按照气球的起始位置排序
// int[][] points
Arrays.sort(points, (a, b) -> Integer.compare(a[0], b[0]));
如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭
不需要移走气球,直接记录res++即可。
技巧:寻找重复的气球,寻找重叠气球最小右边界
points[i][1] = Math.min(points[i][1], points[i - 1][1]); // 更新重叠气球最小右边界


435. 无重叠区间(重叠区间)
本质还是排序+更新边界
有452,本题很好理解


763.划分字母区间(妙,重叠区间)
用最远出现距离模拟了圈字符的行为。思路很巧妙
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点


统计字符串S中每个字母char出现的最远位置
int[] edge = new int[26];char[] chars = S.toCharArray();for (int i = 0; i < chars.length; i++) {edge[chars[i] - 'a'] = i;}
idx = Math.max(idx,edge[chars[i] - 'a']); // 更新right下标
56. 合并区间(简单,重叠区间)
没什么好说的,简单

//按照左边界排序
Arrays.sort(intervals, (x, y) -> Integer.compare(x[0], y[0]));
738.单调递增的数字(妙,flag的运用)
- 例如N=98,一旦出现strNum[i - 1] > strNum[i]的情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9,这样这个整数就是89,即小于98的最大的单调递增整数。
- 从后向前遍历:
举个例子,数字:332,从前向后遍历的话,那么就把变成了329,此时2又小于了第一位的3了,真正的结果应该是299。
那么从后向前遍历,就可以重复利用上次比较得出的结果了,从后向前遍历332的数值变化为:332 -> 329 -> 299
-
用一个flag(start)来标记从哪里开始赋值9。

// flag用来标记赋值9从哪里开始
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
将一个 int 类型的整数 N 转换为字符串,然后将这个字符串按字符拆分为一个字符数组。
String[] strings = (N + "").split("");
String, char 与 int 的转换使用
class Solution {public int monotoneIncreasingDigits(int n) {String s = String.valueOf(n);char[] chars = s.toCharArray();int start = s.length();for (int i = s.length() - 2; i >= 0; i--) {if (chars[i] > chars[i + 1]) {chars[i]--;start = i+1;}}for (int i = start; i < s.length(); i++) {chars[i] = '9';}return Integer.parseInt(String.valueOf(chars));}
}
968.监控二叉树(难)
贪心+二叉树
麻烦的是判断出每个节点的状态与各种转移情况。考虑的细节比较繁多。
思路:从低到上遍历,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
- 后序遍历:左右中
-
隔两个节点放一个摄像头(状态转移)
每个节点可能的三种状态:
- 0:该节点无覆盖
- 1:本节点有摄像头
- 2:本节点有覆盖
(空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了)
单层逻辑处理主要有如下四类情况:
- 情况1:左右节点都有覆盖,中间节点应该就是无覆盖 return 0;
- 情况2:左右节点至少有一个无覆盖的情况,中间节点放摄像头 result++,且return 1;
- 情况3:左右节点至少有一个有摄像头,父节点就是覆盖 return 2;
- 情况4:头结点没有覆盖 result++(以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况)

动态规划
耶耶耶贪心终于结束,开始动态规划
相关文章:
偷懒总结篇|贪心算法|动态规划|单调栈|图论
由于这周来不及了,先过一遍后面的思路,具体实现等下周再开始详细写。 贪心算法 这个图非常好 122.买卖股票的最佳时机 II(妙,拆分利润) 把利润分解为每天为单位的维度,需要收集每天的正利润就可以,收集正利润的区间…...
C语言初阶七:C语言操作符详解(1)
#1024程序员节|征文# 这篇文章是对之前文章中操作符的补充,可以看之前的文章:C语言初阶:六.算数操作_如何用编程表示除法-CSDN博客 C语言操作符是用于执行各种运算和操作的符号。包括算术操作符(如、-、*、/、%)&#…...
GO excelize 读取excel进行时间类型转换(自动转换)
GO excelize 读取excel进行时间类型转换(自动转换) 需求分析 需求:如何自动识别excel中的时间类型数据并转化成对应的 "Y-m-d H:i:s"类型数据。 分析:excelize在读取excel时,GetRows() 返回的都是字符串类…...
【算法与数据结构】二分查找思想
#1024程序员节|征文# 正文: 二分查找(binary search)是一种基于分治策略的高效搜索算法。它利用数据的有序性,每轮缩小一半搜索范围,直至找到目标元素或搜索区间为空为止,其实有时候数据没有序…...
PHP PDO:安全、灵活的数据持久层解决方案
PHP PDO:安全、灵活的数据持久层解决方案 PHP PDO(PHP Data Objects)是一个轻量级的、具有兼容接口的数据持久层抽象层。它提供了一个统一的API来访问多种数据库系统,如MySQL、PostgreSQL、SQLite、Oracle等。PDO扩展在PHP 5.1.0…...
九、Linux实战案例:项目部署全流程深度解析
Linux实战案例:项目部署全流程深度解析 在当今信息技术领域,Linux服务器凭借其卓越的稳定性、安全性以及强大的性能表现,被广泛应用于各类项目部署场景之中。本文将全面深入地介绍如何将一个项目成功部署至Linux服务器的完整流程,…...
GIS常见前端开发框架
#1024程序员节|征文# 伴随GIS的发展,陆续出现了众多开源地图框架,这些地图框架与众多行业应用融合,极大地拓展了GIS的生命力,这里介绍几个常见的GIS前端开发框架,排名不分先后。 1.Leaflet https://leafl…...
Java | Leetcode Java题解之第506题相对名次
题目: 题解: class Solution {public String[] findRelativeRanks(int[] score) {int n score.length;String[] desc {"Gold Medal", "Silver Medal", "Bronze Medal"};int[][] arr new int[n][2];for (int i 0; i &…...
数据结构 - 堆
今天我们将学习新的数据结构-堆。 01定义 堆是一种特殊的二叉树,并且满足以下两个特性: (1)堆是一棵完全二叉树; (2)堆中任意一个节点元素值都小于等于(或大于等于)左…...
html----图片按钮,商品展示
源码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>图标</title><style>.box{width:…...
YOLOv11改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点
一、本文介绍 本文记录的是利用小波卷积WTConv模块优化YOLOv11的目标检测网络模型。WTConv的目的是在不出现过参数化的情况下有效地增加卷积的感受野,从而解决了CNN在感受野扩展中的参数膨胀问题。本文将其加入到深度可分离卷积中,有效降低模型参数量和计算量,并二次创新C3…...
redis高级篇之redis源码分析List类型quicklist底层演变 答疑159节
(1)ziplist压缩配置:list-compress-depth 0 表示一个quicklist两端不被压缩的节点个数。这里的节点是指quicklist双向链表的节点,而不是指ziplist里面的数据项个数参数list-compress-depth的取值含义如下: 0:是个特殊值,表示都不压缩。这是Redis的默认值…...
Elasticsearch 与 Lucene 的区别和联系
Elasticsearch 与 Lucene 的区别和联系 Elasticsearch 与 Lucene 的区别和联系一、知识背景Elasticsearch 简介Lucene 简介 二、Elasticsearch 和 Lucene 的区别适用场景性能优势和劣势架构设计的异同点 三、Elasticsearch和Lucene的联系四、Elasticsearch和Lucene的应用案例及…...
OpenCV视觉分析之运动分析(5)背景减除类BackgroundSubtractorMOG2的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 基于高斯混合模型的背景/前景分割算法。 该类实现了在文献[320]和[319]中描述的高斯混合模型背景减除。 cv::BackgroundSubtractorMOG2 类是 O…...
【SAP Hana】X-DOC:数据仓库ETL如何抽取SAP中的CDS视图数据
【SAP Hana】X-DOC:数据仓库ETL如何抽取SAP中的CDS视图数据 1、无参CDS对应数据库视图2、有参CDS对应数据库表函数3、封装有参CDS为无参CDS,从而对应数据库视图 1、无参CDS对应数据库视图 select * from ZFCML_REP_V where mandt 300;2、有参CDS对应数…...
WPF的UpdateSourceTrigger属性
在WPF中,UpdateSourceTrigger属性用于控制数据绑定中何时将绑定目标(通常是UI元素)的值更新回绑定源(通常是数据对象)。这个属性有以下几个值: Default:这是默认值,对于不同的绑定目…...
2024-09-25 环境变量,进程地址空间
一、认识常见的环境变量 1. echo $HOME 输出当前用户对应的家目录 当用户登录系统时,流程如下: (1)用户登录系统后,系统启动Shell程序。 (2)启动bash shell,准备接收用户指令。 &a…...
中国移动机器人将投入养老场景;华为与APUS共筑AI医疗多场景应用
AgeTech News 一周行业大事件 华为与APUS合作,共筑AI医疗多场景应用 中国移动展出人形机器人,预计投入养老等场景 作为科技与奥富能签约,共拓智能适老化改造领域 天与养老与香港科技园,共探智慧养老新模式 中山大学合作中国…...
青少年编程能力等级测评CPA C++ 四级试卷(1)
青少年编程能力等级测评CPA C 四级试卷(1) 一、单项选择题(共15题,每题3分,共45分) CP4_1_1.在面向对象程序设计中,与数据构成一个相互依存的整体的是( )。 A. 对数据…...
树上任意两点的距离
题目描述 给出 n 个点的一棵树,多次询问两点之间的最短距离。 注意:边是双向的。 输入描述 第一行为两个整数 n 和 m。n 表示点数,m 表示询问次数; 下来 n−1 行,每行三个整数 x,y,k,表示点 x 和点 y 之间…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门  刷机程序 和 镜像 就不提供了。要刷的时…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比
目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
scikit-learn机器学习
# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...
