当前位置: 首页 > news >正文

计算机毕业设计Python+大模型租房推荐系统 租房大屏可视化 租房爬虫 hadoop spark 58同城租房爬虫 房源推荐系统

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

用到的技术:
    1. python
    2. django后端框架
    3. django-simpleui,Django后台
    4. vue前端
    5. element-plus,vue的前端组件库
    6. echarts前端可视化库
    7. scrapy爬虫框架

基于大数据的租房信息推荐系统包括以下功能:

    数据爬取和清洗
    实现方法:使用Scrapy框架进行数据爬取,通过Python进行数据清洗。首先,定义网页解析器,利用XPath语法获取租房信息的相关数据(如房源价格、房屋类型、朝向、楼层等数据),再使用正则表达式对数据进行清洗。

    数据库设计与管理
    实现方法:使用MySQL数据库存储租房信息数据,设计表结构包括租房信息、用户信息、常用搜索关键词、用户历史搜索记录等,通过Django ORM实现对数据库的数据操作。

    推荐算法实现
    实现方法:使用基于协同过滤的推荐算法,根据用户过去的租房行为和喜好,从租房信息数据库中寻找类似的房屋信息,然后根据用户的个性化需求和偏好进行推荐。

    前后端架构设计与实现
    实现方法:使用Vue.js作为前端框架,实现网站界面的交互效果;使用Django作为后端框架,实现网站后台的功能逻辑。采用RESTful API实现前后端数据交互。

    可视化展示
    实现方法:使用Echarts工具实现数据可视化,并将推荐结果展示在大屏幕上,以便用户能够更直观地了解推荐信息。

    统计和分析
    实现方法:对租房类型、房屋朝向、楼层类型、房源价格和数量等进行统计和分析,以便为用户提供更全面、准确的租房信息。通过Python的数据分析库(如pandas等)实现数据的处理和分析。

论文可能的摘要:
    随着信息化水平的高速发展,租房市场越来越受到人们的青睐。然而,在庞大的租房信息中,如何让用户快速并准确地找到适合自己的房源,成为了当前市场上亟待解决的问题。

    本文提出了基于大数据的租房信息推荐系统的实现方案,通过利用 python、django、vue、scrapy、echarts 等技术,搭建一个全面的租房信息平台。

    该系统主要分为如下几个模块:信息爬取、数据处理、协同过滤算法、数据可视化以及租房信息推荐等。

    在信息爬取方面,本系统采用 scrapy 爬虫框架,对贝壳租房网站进行爬取,获得大量的租房信息。在数据处理方面,本系统通过对爬取的数据进行清洗、去重、筛选等操作,使其更加符合用户需求。

    在算法方面,本系统引入协同过滤算法,根据用户在平台上的行为、历史租房记录等因素,为用户推荐有可能满足需求的房源。

    在数据可视化方面,本系统利用 echarts 技术,将整合后的数据以图表形式展示在大屏幕上,帮助用户更好地了解市场情况。

    通过该租房信息推荐系统的实际应用效果,本文得出结论:该系统能够对租房市场进行有效的数据分析和方便的房源搜索,并且可以根据用户的行为和历史租房记录,向用户推荐更加合适的房源。同时,数据可视化也使得用户更加容易理解市场趋势,更好地做出租房决策。

    本文的创新点在于:将 scrapy 与协同过滤算法有机结合,并采用数据可视化的方式展示数据,从而使用户更加直观地了解市场情况。本文还指出了一些改进方向:针对租房市场的特点,可以探索一些更加精准的算法;同时,可以将推荐算法与用户购房意愿、财务状况等个人因素进行结合,提高推荐准确度。

    综上所述,本文提出的基于大数据的租房信息推荐系统为租房市场的进一步发展提供了有益的参考。

以下是基于大数据的租房信息推荐系统的论文目录框架:
    绪论
    1.1 研究背景和意义
    1.2 国内外研究现状与进展
    1.3 研究内容和目的
    1.4 研究方法和技术路线

    相关技术介绍
    2.1 大数据技术概述
    2.2 数据爬取和清洗技术
    2.3 协同过滤算法
    2.4 可视化技术及工具

    系统设计与实现
    3.1 系统需求分析与功能模块设计
    3.2 数据库设计与管理
    3.3 前后端架构设计与实现
    3.4 推荐算法实现

    系统测试与评估
    4.1 测试环境与测试数据
    4.2 系统功能测试
    4.3 推荐结果评估

    结果与分析
    5.1 系统实现效果分析
    5.2 推荐算法性能对比分析
    5.3 用户满意度分析

    总结与展望
    6.1 主要工作总结
    6.2 存在问题与改进方向
    6.3 未来发展展望

    参考文献

    附录

目录介绍:
    ├── auth 
    │   ├── __init__.py
    │   ├── admin.py
    │   ├── apps.py
    │   ├── migrations
    │   ├── models.py
    │   ├── tests.py
    │   ├── urls.py 登陆注册相关的路由配置
    │   └── views.py 登陆注册相关的代码
    ├── bs-frontend-template 
    │   ├── LICENSE
    │   ├── encrypt.js
    │   ├── index.html
    │   ├── jest.config.js
    │   ├── mock
    │   ├── package-lock.json
    │   ├── package.json
    │   ├── public
    │   ├── src 前端源代码目录,其中views目录是前端每个页面的主要代码
    │   ├── tailwind.config.js
    │   ├── test
    │   ├── tsconfig.json
    │   └── vite.config.ts
    ├── dist
    │   ├── assets
    │   └── index.html
    ├── index 
    │   ├── __init__.py
    │   ├── admin.py
    │   ├── apps.py
    │   ├── migrations
    │   ├── models.py
    │   ├── tests.py
    │   ├── urls.py 路由配置
    │   ├── utils.py
    │   └── views.py 挂起前端页面的代码
    ├── manage.py 入口文件
    ├── middlewares
    │   └── __init__.py
    │   ├── __init__.py
    ├── rental 最主要的代码目录在此
    │   ├── admin.py 租房后台管理配置
    │   ├── apps.py
    │   ├── migrations
    │   ├── models.py 租房数据库模型
    │   ├── tests.py
    │   ├── urls.py 租房相关路由配置
    │   └── views.py 租房相关所有的接口代码都在这,非常重要的一个文件
    ├── rental.sql 租房原始数据
    ├── rental_recommand_system 后端总配置目录
    │   ├── __init__.py
    │   ├── settings.py
    │   ├── urls.py 路由总配置
    │   └── wsgi.py
    ├── requirements.txt python依赖库文件
    ├── scrapy.cfg
    ├── spider 贝壳租房爬虫代码
    │   ├── __init__.py
    │   ├── items.py
    │   ├── middlewares.py
    │   ├── pipelines.py 数据入库代码
    │   ├── settings.py
    │   └── spiders 爬虫文件所在
    └── 项目介绍.txt

相关文章:

计算机毕业设计Python+大模型租房推荐系统 租房大屏可视化 租房爬虫 hadoop spark 58同城租房爬虫 房源推荐系统

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 用到的技术: 1. python…...

深度学习技术演进:从 CNN、RNN 到 Transformer 的发展与原理解析

深度学习的技术演进经历了从卷积神经网络(CNN)到循环神经网络(RNN)再到 Transformer 的重要发展。这三个架构分别擅长处理图像、序列数据和多种任务的特征,标志着深度学习在不同领域取得的进步。 1. 卷积神经网络&…...

Lua中的goto语句

软考鸭微信小程序 过软考,来软考鸭! 提供软考免费软考讲解视频、题库、软考试题、软考模考、软考查分、软考咨询等服务 在Lua编程语言中,goto语句是一种跳转语句,用于将程序的执行流程无条件地转移到程序中的另一个位置。这个位置由一个标签(…...

【rust实战】rust博客系统2_使用wrap启动rust项目服务

如何创建一个使用warp框架的rust项目1.使用cargo 创建项目 cargo new blog 2.添加warp依赖 1.cd blog 2.编辑Cargo.toml文件 添加warp 和 tokio 作为依赖项 在[dependencies]中添加 [package] name "blog" version "0.1.0" …...

【实战案例】Django框架使用模板渲染视图页面及异常处理

本文基于之前内容列表如下: 【图文指引】5分钟搭建Django轻量级框架服务 【实战案例】Django框架基础之上编写第一个Django应用之基本请求和响应 【实战案例】Django框架连接并操作数据库MySQL相关API 视图概述 Django中的视图的概念是一类具有相同功能和模板的网…...

设置K8s管理节点异常容忍时间

说明 每个节点上的 kubelet 需要定时向 apiserver 上报当前节点状态,如果两者间网络异常导致心跳终端,kube-controller-manager 中的 NodeController 会将该节点标记为 Unknown 或 Unhealthy,持续一段时间异常状态后 kube-controller-manage…...

什么样的JSON编辑器才好用

简介 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也便于机器解析和生成。随着互联网和应用程序的快速发展,JSON已经成为数据传输和存储的主要格式之一。在处理和编辑JSON数据…...

ArkUI自定义TabBar组件

在ArkUI中的Tabs,通过页签进行内容视图切换的容器组件,每个页签对应一个内容视图。其中内容是图TabContent作为Tabs的自组件,通过给TabContent设置tabBar属性来自定义导航栏样式。现在我们就根据UI设计的效果图来实现下图效果: 根…...

pair类型应用举例

在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <utility> //使能pair数据类型; #include <string> //使能string字符串; #include <stdlib.h> //使能exit(); //pair类型可以将两个相同的或不同类…...

数字 图像处理算法的形式

一 基本功能形式 按图像处理的输出形式&#xff0c;图像处理的基本功能可分为三种形式。 1&#xff09;单幅图像 单幅图像 2&#xff09;多幅图像 单幅图像 3&#xff09;单&#xff08;或多&#xff09;幅图像 数字或符号等 二 几种具体算法形式 1.局部处理邻域对于任一…...

安徽对口高考Python试题选:输入一个正整数,然后输出该整数的3的幂数相加形式。

第一步&#xff1a;求出3的最高次幂是多少 guoint(input("请输入一个正整数:")) iguo a0 while i>0: if 3**i<guo: ai break ii-1print(a)#此语句为了看懂题目&#xff0c;题目中不需要打印出最高幂数 第二步…...

Node.js是什么? 能做什么?

‌Node.js是一个基于Chrome V8引擎的JavaScript运行环境&#xff0c;它使用事件驱动、非阻塞式I/O模型&#xff0c;使得JavaScript能够在服务器端运行。Node.js允许JavaScript脱离浏览器&#xff0c;直接在服务器和计算机上使用&#xff0c;极大地扩展了JavaScript的应用范围。…...

JVM快速入门

1、 JVM探究 面试问题 :谈谈对JVM的理解? java8虚拟机和之前的变化更新?什么是OOM,什么是栈溢出StackOverFlowError?怎么分析?JVM的常用调优参数有哪些?内存快照如何抓取,怎么分析Dump文件?知道吗?谈谈JVM中,类加载器你的认识?2、JVM的位置 3、JVM的体系结构 3.1…...

理解深度学习模型——高级音频特征表示的分层理解

理解深度学习模型可以是一个复杂的过程&#xff0c;因为这些模型通常包含大量的参数和层次。 &#xff08;1&#xff09;复杂性来源&#xff1a; 深度学习模型的复杂性来源于多个方面&#xff0c;包括模型的规模、层次结构、参数数量以及训练数据的复杂性。以下是一些关键点&a…...

【HarmonyOS Next】原生沉浸式界面

背景 在实际项目中&#xff0c;为了软件使用整体色调看起来统一&#xff0c;一般顶部和底部的颜色需要铺满整个手机屏幕。因此&#xff0c;这篇帖子是介绍设置的方法&#xff0c;也是应用沉浸式效果。如下图&#xff1a;底部的绿色延伸到上面的状态栏和下面的导航栏 UI 在鸿蒙…...

数据结构 ——— 树的概念及结构

目录 树的结构以及示意图 树的概念​编辑 树的结构与递归的关系​编辑 树的结构以及示意图 树是一种非线性的数据结构&#xff0c;它是由 n(n>0) 个有限节点组成一个具有层次关系的集合 把这种结构叫做树是因为它看起来像一棵倒挂的树 特点&#xff1a; 有一个特殊的…...

初探Vue前端框架

文章目录 简介什么是Vue概述优势MVVM框架 Vue的特性数据驱动视图双向数据绑定指令插件 Vue的版本版本概述新版本Vue 3Vue 3新特性UI组件库UI组件库概述常用UI组件库 安装Vue安装Vue查看Vue版本 实例利用Vue命令创建Vue项目切换工作目录安装vue-cli脚手架创建Vue项目启动Vue项目…...

Lucas带你手撕机器学习——岭回归

岭回归&#xff08;Ridge Regression&#xff09; 一、背景与引入 在进行线性回归分析时&#xff0c;我们常常面临多重共线性的问题。多重共线性指的是自变量之间高度相关&#xff0c;这会导致回归系数的不稳定性&#xff0c;使得模型的预测能力降低。传统的线性回归通过最小…...

C2W4.LAB.Word_Embedding.Part1

理论课&#xff1a;C2W4.Word Embeddings with Neural Networks 文章目录 Word Embeddings First Steps: Data PreparationCleaning and tokenizationSliding window of wordsTransforming words into vectors for the training setMapping words to indices and indices to w…...

hive初体验

1.首先&#xff0c;确保启动了Metastore服务。 runjar就是metastore进程 2.进入hive客户端: 命令:hive 3.操作:没有指定数据库时默认在default 一:创建表:CREATE TABLE test(id INT, name STRING, gender STRING); 完成,show tables看一下 也可以通过hdfs文件系统查看,默认路径…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...