【目标检测01】真实框、预测框、锚框和交并比IoU
文章目录
- 1. 任务定义
- 2. 基本概念
- 2.1 边界框(bounding box)
- 2.2 真实框、预测框和锚框
- 2.3 交并比 (IoU)
- 2.4 代码实现
1. 任务定义
目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框,标示出每个目标的位置,如图所示。

2. 基本概念
2.1 边界框(bounding box)
检测任务需要同时预测物体的类别和位置,因此需要引入一些跟位置相关的概念。通常使用边界框(bounding box,bbox)来表示物体的位置,边界框是正好能包含物体的矩形框,如下图所示,图中3个人分别对应3个边界框。

一般有两种表示边界框位置的格式:
(1) x y x y xyxy xyxy,即 ( x 1 , y 1 , x 2 , y 2 ) (x1, y1, x2, y2) (x1,y1,x2,y2),其中 ( x 1 , y 1 ) (x1, y1) (x1,y1) 是矩形框左上角的坐标, ( x 2 , y 2 ) (x2, y2) (x2,y2) 是矩形框右下角的坐标。
(2) x y w h xywh xywh,即 ( x , y , w , h ) (x, y, w, h) (x,y,w,h), 其中 ( x , y ) (x, y) (x,y) 是矩形框的中心坐标, w w w 是 矩形框的宽度, h h h 是矩形框的高度。
因此,在阅读代码的时候,要注意使用的是哪一种格式的表示方式。
2.2 真实框、预测框和锚框
从训练数据集的标签里给出目标物体边界框所对应的位置叫真实框
由模型预测出目标物体边界框所对应的位置叫预测框
不同于真实框和预测框,锚框是人为预先设定好的矩形框,模型在这种锚框的基础上预测偏移量才能得到预测框
2.3 交并比 (IoU)
如何衡量预测框和真实框之间的关系呢?在检测任务中是使用交并比(Intersection of Union,IoU)作为衡量指标。这一概念来源于数学中的集合,用来描述两个集合A和B之间的关系,它等于两个集合的交集里面所包含的元素个数,除以它们的并集里面所包含的元素个数,具体计算公式如下:
I O U = A ∩ B A ∪ B IOU = \frac{A \cap B}{A \cup B} IOU=A∪BA∩B我们将用这个概念来描述两个框之间的重合度。两个框可以看成是两个像素的集合,它们的交并比等于两个框重合部分的面积除以它们合并起来的面积。下图“交集”中青色区域是两个框的重合面积,图“并集”中蓝色区域是两个框的相并面积。用这两个面积相除即可得到它们之间的交并比。

假设两个矩形框A和B的位置分别为:
A : [ x a 1 , y a 1 , x a 2 , y a 2 ] A : [ x b 1 , y b 1 , x b 2 , y b 2 ] A: [x_{a1}, y_{a1}, x_{a2}, y_{a2}] \\ A: [x_{b1}, y_{b1}, x_{b2}, y_{b2}] A:[xa1,ya1,xa2,ya2]A:[xb1,yb1,xb2,yb2]它们之间的位置关系如图所示:

A和B相交部分左上角坐标为:
x 1 = m a x ( x a 1 , x b 1 ) y 1 = m a x ( y a 1 , y b 1 ) x1 = max(x_{a1}, x_{b1})\\ y1 = max(y_{a1}, y_{b1}) x1=max(xa1,xb1)y1=max(ya1,yb1) 相交部分右下角坐标为:
x 2 = m i n ( x a 2 , x b 2 ) y 2 = m i n ( y a 2 , y b 2 ) x2 = min(x_{a2}, x_{b2})\\ y2 = min(y_{a2}, y_{b2}) x2=min(xa2,xb2)y2=min(ya2,yb2)相交部分面积为:
i n t e r s e c t i o n = m a x ( x 2 − x 1 + 1.0 , 0 ) ⋅ m a x ( y 2 − y 1 + 1.0 , 0 ) intersection = max(x_2 - x_1 + 1.0, 0) \cdot max(y_2 - y_1 + 1.0, 0) intersection=max(x2−x1+1.0,0)⋅max(y2−y1+1.0,0)分别计算A和B的面积:
S A = ( x a 2 − x a 1 + 1.0 ) ⋅ ( y a 2 − y a 1 + 1.0 ) S B = ( x b 2 − x b 1 + 1.0 ) ⋅ ( y b 2 − y b 1 + 1.0 ) S_A = (x_{a2} - x_{a1} + 1.0) \cdot (y_{a2} - y_{a1} + 1.0) \\ S_B = (x_{b2} - x_{b1} + 1.0) \cdot (y_{b2} - y_{b1} + 1.0) SA=(xa2−xa1+1.0)⋅(ya2−ya1+1.0)SB=(xb2−xb1+1.0)⋅(yb2−yb1+1.0)计算相并部分:
u n i o n = S A + S B − i n t e r s e c t i o n union = S_A + S_B - intersection union=SA+SB−intersection 计算交并比:
I o U = i n t e r s e c t i o n u n i o n IoU = \frac{intersection}{union} IoU=unionintersection
2.4 代码实现
(1)矩形框坐标形式为 x y x y xyxy xyxy 形式时:
def box_iou_xyxy(box1, box2):# 获取box1左上角和右下角的坐标x1min, y1min, x1max, y1max = box1[0], box1[1], box1[2], box1[3]# 计算box1的面积s1 = (y1max - y1min + 1.) * (x1max - x1min + 1.)# 获取box2左上角和右下角的坐标x2min, y2min, x2max, y2max = box2[0], box2[1], box2[2], box2[3]# 计算box2的面积s2 = (y2max - y2min + 1.) * (x2max - x2min + 1.)# 计算相交矩形框的坐标xmin = np.maximum(x1min, x2min)ymin = np.maximum(y1min, y2min)xmax = np.minimum(x1max, x2max)ymax = np.minimum(y1max, y2max)# 计算相交矩形行的高度、宽度、面积inter_h = np.maximum(ymax - ymin + 1., 0.)inter_w = np.maximum(xmax - xmin + 1., 0.)intersection = inter_h * inter_w# 计算相并面积union = s1 + s2 - intersection# 计算交并比iou = intersection / unionreturn iou
1)矩形框坐标形式为 x y w h xywh xywh 形式时:
def box_iou_xywh(box1, box2):# 获取box1左上角和右下角的坐标x1min, y1min = box1[0] - box1[2]/2.0, box1[1] - box1[3]/2.0x1max, y1max = box1[0] + box1[2]/2.0, box1[1] + box1[3]/2.0# 计算box1的面积s1 = box1[2] * box1[3]# 获取box2左上角和右下角的坐标x2min, y2min = box2[0] - box2[2]/2.0, box2[1] - box2[3]/2.0x2max, y2max = box2[0] + box2[2]/2.0, box2[1] + box2[3]/2.0# 计算box2的面积s2 = box2[2] * box2[3]xmin = np.maximum(x1min, x2min)ymin = np.maximum(y1min, y2min)xmax = np.minimum(x1max, x2max)ymax = np.minimum(y1max, y2max)inter_h = np.maximum(ymax - ymin, 0.)inter_w = np.maximum(xmax - xmin, 0.)intersection = inter_h * inter_wunion = s1 + s2 - intersectioniou = intersection / unionreturn iou
相关文章:
【目标检测01】真实框、预测框、锚框和交并比IoU
文章目录 1. 任务定义2. 基本概念2.1 边界框(bounding box)2.2 真实框、预测框和锚框2.3 交并比 (IoU)2.4 代码实现 1. 任务定义 目标检测的主要目的是让计算机可以自动识别图片或者视频帧中所有目标的类别,并在该目标周围绘制边界框&#x…...
青少年编程能力等级测评CPA C++五级试卷(2)
青少年编程能力等级测评CPA C++五级试卷(2) 一、单项选择题(共15题,每题3分,共45分) CP5_2_1.下列有关类的重用方法的叙述中,不正确的是( )。 A.类的继承可以实现类的重用 B.类的组合可以实现类的重用 C.类的封装可以实现类的重用 D.类的继承和类的组合都可…...
SATA数据线
SATA 数据线(Serial ATA 数据线)是一种用于连接计算机主板与存储设备(如硬盘、固态硬盘和光驱)的线缆。它的主要作用是传输数据,允许计算机与这些设备之间进行高效的数据交换。 主要作用 数据传输:SATA 数…...
《云原生安全攻防》-- K8s攻击案例:权限维持的攻击手法
在本节课程中,我们将一起深入了解K8s权限维持的攻击手法,通过研究这些攻击手法的技术细节,来更好地认识K8s权限维持所带来的安全风险。 在这个课程中,我们将学习以下内容: K8s权限维持:简单介绍K8s权限维持…...
回溯算法-Java【力扣】【算法学习day.14】
前言 ###我做这类文档一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴&am…...
从本地到云端:跨用户请求问题的完美解决方案
对于某些单个请求或响应中含有多个用户信息的服务,SDK提供了一套基于统一的UCS拆分和聚合的解决方案供开发者使用。 请求拆分 对于跨用户服务的请求,我们提供了两个处理方案: 【1】根据用户信息拆分请求: 场景:请求内…...
leetcode day4 409+5
409 最长回文串 给定一个包含大写字母和小写字母的字符串 s ,返回 通过这些字母构造成的 最长的 回文串 的长度。 在构造过程中,请注意 区分大小写 。比如 "Aa" 不能当做一个回文字符串。 示例 1: 输入:s "abccccdd" 输出:7 解…...
英语语法学习框架(考研)
一、简单句 英语都是由简单句构成,简单句共有五种基本句型:①主谓;②主谓宾;③主谓宾宾补;④主谓宾间宾(间接宾语);⑤主系表; 其中谓语是句子最重要的部分,谓…...
基于neo4j的学术论文关系管理系统
正在为毕业设计头疼?又或者在学术研究中总是找不到像样的工具来管理浩瀚的文献资料?今天给大家介绍一款超实用的工具——基于Neo4j的学术论文关系管理系统,让你轻松搞定学术文献的管理与展示!🎉 系统的核心是什么呢&a…...
C#中的委托、匿名方法、Lambda、Action和Func
委托 委托概述 委托是存有对某个方法的引用的一种引用类型变量。定义方法的类型,可以把一个方法当作另一方法的参数。所有的委托(Delegate)都派生自 System.Delegate 类。委托声明决定了可由该委托引用的方法。 # 声明委托类型 委托类型声…...
IDEA关联Tomcat——最新版本IDEA 2024
1.链接Tomcat到IDEA上 添加Tomcat到IDEA上有两种方式: 第一种: (1)首先,来到欢迎界面,找到左侧的Customize选项 (2)然后找到Build、Execution、Deployment选项 (3&am…...
【如何获取股票数据18】Python、Java等多种主流语言实例演示获取股票行情api接口之沪深A股解禁限售数据获取实例演示及接口API说明文档
最近一两年内,股票量化分析逐渐成为热门话题。而从事这一领域工作的第一步,就是获取全面且准确的股票数据。因为无论是实时交易数据、历史交易记录、财务数据还是基本面信息,这些数据都是我们进行量化分析时不可或缺的宝贵资源。我们的主要任…...
NVR小程序接入平台/设备EasyNVR多品牌NVR管理工具/设备的多维拓展与灵活应用
在数字化安防时代,NVR批量管理软件/平台EasyNVR作为一种先进的视频监控系统设备,正逐步成为各个领域监控解决方案的首选。NVR批量管理软件/平台EasyNVR作为一款基于端-边-云一体化架构的国标视频融合云平台,凭借其部署简单轻量、功能多样、兼…...
GPT-4o 和 GPT-4 Turbo 模型之间的对比
GPT-4o 和 GPT-4 Turbo 之间的对比 备注 要弄 AI ,不同模型之间的对比就比较重要。 GPT-4o 是 GPT-4 Turbo 的升级版本,能够提供比 GPT-4 Turbo 更多的内容和信息,但成功相对来说更高一些。 第三方引用 在 2024 年 5 月 13 日࿰…...
gin入门教程(10):实现jwt认证
使用 github.com/golang-jwt/jwt 实现 JWT(JSON Web Token)可以有效地进行用户身份验证,这个功能往往在接口前后端分离的应用中经常用到。以下是一个基本的示例,演示如何在 Gin 框架中实现 JWT 认证。 目录结构 /hello-gin │ ├── cmd/ …...
Python 基础语法 - 数据类型
顾名思义,计算机就是用来做数学计算的机器,因此,计算机程序理所当然的可以处理各种数值。但是,计算机能处理的远远不止数值,还可以处理文本,图形,音频,视频,网页等各种各…...
自托管无代码数据库Undb
什么是 Undb ? Undb 是一个无代码平台,也可以作为后端即服务 (BaaS)。它基于 SQLite,可以使用 Bun 打包成二进制文件用于后端服务。此外,它可以通过 Docker 部署为服务,提供表管理的 UI。 软件特点: ⚡ 无…...
正则的正向前瞻断言和负向前瞻断言
正则的正向前瞻断言和负向前瞻断言 一. 正向前瞻断言二. 负向前瞻断言三. 总结 这是我在这个网站整理的笔记,有错误的地方请指出,关注我,接下来还会持续更新。 作者:神的孩子都在歌唱 正向前瞻断言和负向前瞻断言是正则表达式中用于检查后续字…...
大厂物联网(IoT)高频面试题及参考答案
目录 解释物联网 (IoT) 的基本概念 物联网的主要组成部分有哪些? 描述物联网的基本架构。 IoT 与传统网络有什么区别? 物联网中常用的传感器类型有哪些? 描述物联网的三个主要层次。 简述物联网中数据安全的重要性 描述物联网安全的主要威胁 解释端到端加密在 IoT 中…...
react hook
react hook 最近实习有点忙,所以学习记录没来得及写。 HOC higher order components(HOC) 高阶组件是一个组件,接受一个参数作为组件,返回值也是一个组件的函数。高阶组件作用域强化组件,服用逻辑,提升渲染性能等。…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
