当前位置: 首页 > news >正文

矩阵的可解性:关于Ax=b的研究

上一篇文章讲解了如何求解 A x = 0 Ax=0 Ax=0,得到 A A A的零空间。

类似的,我们今天学习的是如何求解 A x = b Ax=b Ax=b,并以此加强你对线性代数中,代数与空间的理解。


同样的,我们举与上一次一样的例子,矩阵 A A A为:

[ 1 2 2 2 2 4 6 8 3 6 8 10 ] \left[ \begin{matrix} 1 & 2 & 2 &2\\ 2 & 4 & 6&8\\ 3 & 6& 8 &10 \end{matrix} \right] 1232462682810

关于这个矩阵的详细分析与消元过程在上一篇文章讨论过,这里就不再赘述。


首先,我们将 b b b增广到矩阵 A A A中,得到如下矩阵:

∣ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ∣ \left| \begin{array}{lccc|c} {1}&{2}&{2}&{2} &{b_1}\\ {2}&{4}&{6}&{8} &{b_2}\\ {3}&{6}&{8}&{10}&{b_3} \end{array} \right| 1232462682810b1b2b3

经消元处理,能得到如下矩阵:

∣ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 × b 1 0 0 0 0 b 3 − b 2 − b 1 ∣ \left| \begin{array}{lccc|c} {1}&{2}&{2}&{2} &{b_1}\\ {0}&{0}&{2}&{4} &{b_2-2\times b_1}\\ {0}&{0}&{0}&{0}&{b_3-b_2-b_1} \end{array} \right| 100200220240b1b22×b1b3b2b1


在继续进行下一步操作前,让我们想一想这个问题: A x = b Ax=b Ax=b在何时有解?

观察消元过后的第三行,不难发现, b b b的元素应该满足 b 3 − b 2 − b 1 = 0 b_3-b_2-b_1=0 b3b2b1=0,这样才能使矩阵第三行成立。对这个结论进行拓展,不难想到,当 b b b在矩阵 A A A的列空间内时,方程有解。明白这一点也会对我们接下来的操作有指导意义。


如同我们求零空间的方法,我们利用消元过后的自由列能快速得到一个关于 A x = b Ax=b Ax=b的特殊解。

具体到这道题上,我们可以看到 A 1 , 1 与 A 2 , 3 A_{1,1}与A_{2,3} A1,1A2,3为主元。因为自由列的变量可以取任意值,为求计算方便,我们一般取其为0,即 x 2 = 0 , x 4 = 0 x_2=0,x_4=0 x2=0,x4=0

那么此时的方程就变为了这样:

x 1 + 2 x 3 = b 1 2 × x 2 = b 2 − 2 b 1 x_1+2x_3=b_1 \\ 2 \times x_2 = b_2-2b_1 x1+2x3=b12×x2=b22b1

因为 b 1 , b 2 b_1,b_2 b1,b2为参数,所以现在我们就求得了特解 x p a r t i c u l a r , 即 x p x_{particular},即x_p xparticular,xp


又一次同样的,我们采用求零空间时的方法,利用特解来求得所有的解,而这里也会用上零空间 N N N,设其中任意的元素为 n n n吧。

那么,我们有:

A x p = b A n = 0 Ax_p=b \\ An = 0 Axp=bAn=0

不难发现, A ( x p + n ) = b A(x_p+n)=b A(xp+n)=b,即特解加上零空间的和后得到的向量同样是方程的解。不妨猜想,特解加上零空间即使所有的解。前面证明了充分性,下面证明必要性:

x x x为一个任意的方程的解,有
A x = b A x p = b → A ( x − x P ) = 0 Ax=b \\ Ax_p=b \\ \rightarrow A(x-x_P)=0 Ax=bAxp=bA(xxP)=0
换言之 n + x p = x n+x_p=x n+xp=x
证得必要性成立。

所以,我们得到了 A x = b Ax=b Ax=b的解,即为其特解加上 A A A的零空间。

此时,再来想象一下,零空间是经过原点的向量空间,那么 A x = b Ax=b Ax=b的解就应是将零空间向特解的方向平移过去所得。要注意的是,其解并不包含原点,所以不是向量空间。


相关文章:

矩阵的可解性:关于Ax=b的研究

上一篇文章讲解了如何求解 A x 0 Ax0 Ax0,得到 A A A的零空间。 类似的,我们今天学习的是如何求解 A x b Axb Axb,并以此加强你对线性代数中,代数与空间的理解。 同样的,我们举与上一次一样的例子,矩阵 …...

10.22.2024刷华为OD C题型(三)--for循环例子

脚踝动了手术,现在宾馆恢复,伤筋动骨一百天还真不是说笑的,继续努力吧。 文章目录 靠谱的车灰度图恢复灰度图恢复 -- for循环使用例子 靠谱的车 https://www.nowcoder.com/discuss/564514429228834816 这个题目思路不难,就是要自…...

QT:MaintenanceTool 模块安装工具

QT的MaintenanceTool 工具对已安装的 Qt 进行卸载、修复等其他操作时提示At least one valid and enabled repository required for this action to succeed 解决方式:在设置中添加一个临时的仓库 https://mirrors.tuna.tsinghua.edu.cn/qt/online/qtsdkrepositor…...

同标签实现监听LocalStorage

使用 React 生命周期函数 useEffect来监听和处理 LocalStorage 的变化 import React, { useEffect } from react;const LocalStorageListener () > {useEffect(() > {// 注册监听器const handleStorageChange (event) > {if (event.key myKey) {console.log(注册…...

JAVA高性能缓存项目

版本一 代码实现 import java.util.HashMap; import java.util.concurrent.TimeUnit;public class CacheExample01 {private final static HashMap<String, Integer> cache new HashMap<>();public static Integer check(String userId) throws InterruptedExce…...

智慧农业大数据平台:智汇田园,数驭未来

智慧农业大数据平台 计讯物联智慧农业大数据平台是一个集管理数字化、作业自动化、生产智能化、产品绿色化、环境信息化、服务现代化于一体的多功能监管系统。它通过与硬件产品的搭配使用&#xff0c;实现对农业生产全过程的实时监测、精准控制和科学管理。该平台集成了多个数…...

Go语言基础教程:可变参数函数

Go 语言允许函数接收可变数量的参数&#xff0c;这种特性对于处理数量不确定的参数特别有用。在本教程中&#xff0c;我们将通过示例代码讲解如何定义和使用 Go 的可变参数函数。 package mainimport "fmt"// 定义一个可变参数函数 sum&#xff0c;接收任意数量的整…...

高并发场景下解决并发数据不一致

简单的场景: 全量数据更新的情况下, 不在乎同一秒的请求都必须要成功, 只留下最新的更新请求数据 方案常用的是 1、数据库增加时间戳标识实现的乐观锁, 请求参数从源头带上微秒或者毫秒时间戳数据库存储, 然后在更新SQL语句上比较 (数据库的时间 < 参数传递的时间) 例如: A…...

OpenAI GPT-o1实现方案记录与梳理

本篇文章用于记录从各处收集到的o1复现方案的推测以及介绍 目录 Journey Learning - 上海交通大学NYUMBZUAIGAIRCore IdeaKey QuestionsKey TechnologiesTrainingInference A Tutorial on LLM Reasoning: Relevant methods behind ChatGPT o1 - UCL汪军教授Core Idea先导自回归…...

Excel:vba实现生成随机数

Sub 生成随机数字()Dim randomNumber As IntegerDim minValue As IntegerDim maxValue As Integer 设置随机数的范围(假入班级里面有43个学生&#xff0c;学号是从1→43)minValue 1maxValue 43 生成随机数(在1到43之间生成随机数)randomNumber Application.WorksheetFunctio…...

Python | Leetcode Python题解之第506题相对名次

题目&#xff1a; 题解&#xff1a; class Solution:desc ("Gold Medal", "Silver Medal", "Bronze Medal")def findRelativeRanks(self, score: List[int]) -> List[str]:ans [""] * len(score)arr sorted(enumerate(score), …...

安全见闻(6)

声明&#xff1a;学习视频来自b站up主 泷羽sec&#xff0c;如涉及侵权马上删除文章 感谢泷羽sec 团队的教学 视频地址&#xff1a;安全见闻&#xff08;6&#xff09;_哔哩哔哩_bilibili 学无止境&#xff0c;开拓自己的眼界才能走的更远 本文主要讲解通讯协议涉及的安全问题。…...

Promise、async、await 、异步生成器的错误处理方案

1、Promise.all 的错误处理 Promise.all 方法接受一个 Promise 数组&#xff0c;并返回所有解析 Promise 的结果数组&#xff1a; const promise1 Promise.resolve("one"); const promise2 Promise.resolve("two");Promise.all([promise1, promise2]).…...

腾讯云:数智教育专场-学习笔记

15点13分2024年10月21日&#xff08;短短5天的时间&#xff0c;自己的成长速度更加惊人&#xff09;-开始进行“降本增效”学习模式&#xff0c;根据小米手环对于自己的行为模式分析&#xff08;不断地寻找数据之间的关联性&#xff09;&#xff0c;每天高效记忆时间&#xff0…...

Ovis: 多模态大语言模型的结构化嵌入对齐

论文题目&#xff1a;Ovis: Structural Embedding Alignment for Multimodal Large Language Model 论文地址&#xff1a;https://arxiv.org/pdf/2405.20797 github地址&#xff1a;https://github.com/AIDC-AI/Ovis/?tabreadme-ov-file 今天&#xff0c;我将分享一项重要的研…...

python的Django的render_to_string函数和render函数模板的使用

一、render_to_string render_to_string 是 Django 框架中的一个便捷函数&#xff0c;用于将模板渲染为字符串。 render_to_string(template_name.html, context, requestNone, usingNone) template_name.html&#xff1a;要渲染的模板文件的名称。context&#xff1a;传递给…...

基于Python大数据的王者荣耀战队数据分析及可视化系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…...

【Linux学习】(3)Linux的基本指令操作

前言 配置Xshell登录远程服务器Linux的基本指令——man、cp、mv、alias&which、cat&more&less、head&tail、date、cal、find、grep、zip&tar、bc、unameLinux常用热键 一、配置Xshell登录远程服务器 以前我们登录使用指令&#xff1a; ssh 用户名你的公网…...

Mac 使用脚本批量导入 Apple 歌曲

最近呢&#xff0c;买了一个 iPad&#xff0c;虽然家里笔记本台式都有&#xff0c;显示器都是 2个&#xff0c;比较方便看代码&#xff08;边打游戏边追剧&#xff09;。 但是在床上拿笔记本始终还是不方便&#xff0c;手机在家看还是小了点&#xff0c;自从有 iPad 之后&…...

全桥PFC电路及MATLAB仿真

一、PFC电路原理概述 PFC全称“Power Factor Correction”&#xff08;功率因数校正&#xff09;&#xff0c;PFC电路即能对功率因数进行校正&#xff0c;或者说是能提高功率因数的电路。是开关电源中很常见的电路。功率因数是用来描述电力系统中有功功率&#xff08;实际使用…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

vscode里如何用git

打开vs终端执行如下&#xff1a; 1 初始化 Git 仓库&#xff08;如果尚未初始化&#xff09; git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

python打卡day49

知识点回顾&#xff1a; 通道注意力模块复习空间注意力模块CBAM的定义 作业&#xff1a;尝试对今天的模型检查参数数目&#xff0c;并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...