当前位置: 首页 > news >正文

全能大模型GPT-4o体验和接入教程

GPT-4o体验和接入教程

  • 前言
  • 一、原生API
  • 二、Python Langchain
  • Spring AI
  • 总结


前言

Open AI发布了产品GPT-4o,o表示"omni",全能的意思。

GPT-4o可以实时对音频、视觉和文本进行推理,响应时间平均为 320 毫秒,和人类之间对话相当。

也就是,以后跟你进行文字聊天、语音聊天、视频聊天的都可能是AI,当然,这样强大的模型,应用场景肯定不止聊天。

如何使用GPT-4o呢?目前可以通过API的方式来使用GPT-4o,但也只能使用到它的文字生成和图像理解的能力,后续会逐步开发音频和视频的能力。

那我们来看看以下几种接入和使用GPT-4o的方式。

一、原生API

在Python环境下,先安装openai依赖

pip install openai

运行以下代码即可体验gpt-4o:

from openai import OpenAIfrom config import BASE_URL, API_KEYclient = OpenAI(base_url=BASE_URL, api_key=API_KEY)response = client.chat.completions.create(model="gpt-4o",messages=[{"role": "user","content": [{"type": "text", "text": "这张图片里有什么?"},{"type": "image_url","image_url": {"url": "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",},},],}],max_tokens=300,
)print(response.choices[0])

图片为:
在这里插入图片描述
得到的答案为:

Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='这张图片展示了一条木板路,通向一片开阔的草地。周围长满了绿草和一些灌木,远处可以看到一些树木。天空晴朗,蓝天上有一些白云,整个场景显得非常宁静和自然。', role='assistant', function_call=None, tool_calls=None))

怎么样,描述的还不错吧。

如果把model换成:

model="gpt-4-turbo"

我自己体验下来,确实速度要慢很多,生成的描述上,GPT-4o给我的感觉确实更好一些,更加文艺一些。

Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content='这张图片展示了一条穿过绿色草地的木板路。图片背景是广阔的蓝天和些许白云,木板路两旁是高高的草丛和散布的灌木。整个景象给人一种平静和自然的感觉。这是一个很好的户外散步或自然探索的场所。', role='assistant', function_call=None, tool_calls=None))

二、Python Langchain

python版本的langchain可以不更新版本就直接使用GPT-4o,先安装依赖:

pip install langchain
pip install langchain-openai

代码如下:

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAIfrom config import API_KEY, BASE_URLmodel = ChatOpenAI(model_name="gpt-4o", openai_api_base=BASE_URL, openai_api_key=API_KEY)prompt = ChatPromptTemplate.from_messages([("system", "解析图片链接,并告诉我这张图片里有什么?"),("human", "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg")
])chain = prompt | modelprint(chain.invoke({}))

结果为:

content='这张图片显示的是一个自然步道(Nature Boardwalk)。步道由木材建造,穿越一个自然区域,看起来像是湿地或湖泊边缘。周围有茂密的绿色植被,包括草地和树木。步道上有几个人在散步,享受自然风光。天空蓝蓝的,天气看起来很好。总体来说,这张图片展现了一个宁静、绿意盎然的户外环境,非常适合散步和休闲活动。' response_metadata={'token_usage': {'completion_tokens': 113, 'prompt_tokens': 68, 'total_tokens': 181}, 'model_name': 'gpt-4o', 'system_fingerprint': 'fp_729ea513f7', 'finish_reason': 'stop', 'logprobs': None} id='run-d863e902-5b10-4cd3-a47e-daf414a1c92b-0'

Spring AI

@GetMapping("/chat")
public String generate() {Prompt prompt = new Prompt(List.of(new SystemMessage("解析图片链接,并告诉我这张图片里有什么?"),new UserMessage("https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg")),OpenAiChatOptions.builder().withModel("gpt-4o").build());return chatClient.call(prompt).getResult().getOutput().getContent();
}

结果为
在这里插入图片描述
当然,也有可能是测试的场景比较简单,没有发现问题。

总结

个人体验而言,GPT-4o确实在速度和效果上都非常不错,特别是速度上比GPT-4-turbo要快很多,效果上。

相关文章:

全能大模型GPT-4o体验和接入教程

GPT-4o体验和接入教程 前言一、原生API二、Python LangchainSpring AI总结 前言 Open AI发布了产品GPT-4o,o表示"omni",全能的意思。 GPT-4o可以实时对音频、视觉和文本进行推理,响应时间平均为 320 毫秒,和人类之间对…...

详解Apache版本、新功能和技术前景

文章目录 一、 版本溯源二、新功能和特性举例1. 模块化和可扩展性增强2. 多处理模块(MPMs)3. 异步支持4. 更细粒度的日志级别控制5. 通用表达式解析器6. HTTP/2支持7. Server Push8. Early Hints9. 更好的SSL/TLS支持10. 更安全的默认设置 三、 技术前景…...

Docker Redis集群3主3从模式

主从集群 docker run -d --name redis-node1 --net host --privilegedtrue -v /home/redis/node1:/data redis:7.0 --cluster-enabled yes --appendonly yes --port 9371docker run -d --name redis-node2 --net host --privilegedtrue -v /home/redis/node2:/data redis:7.0 …...

【Go语言】

type关键字的用法 定义结构体定义接口定义类型别名类型定义类型判断 别名实际上是为了更好地理解代码/ 这里要分点进行记录 使用传值的例子,当两个类型不一样需要进行类型转换 type Myint int // 自定义类型,基于已有的类型自定义一个类型type Myin…...

【Spring Boot】元注解

元注解 1.元注解1.1 Target1.2 Retention1.3 Inherited1.4 Documented1.5 interface 2.自定义注解2.1 创建自定义注解类2.2 实现业务逻辑2.3 使用自定义注解 1.元注解 元注解就是定义注解的注解,是 Java 提供的用于定义注解的基本注解。 注解 说明 Retention是注解…...

基于信号分解和多种深度学习结合的上证指数预测模型

大家好,我是带我去滑雪! 为了给投资者提供更准确的投资建议、帮助政府和监管部门更好地制定相关政策,维护市场稳定,本文对股民情绪和上证指数之间的关系进行更深入的研究,并结合信号分解、优化算法和深度学习对上证指数…...

基于Spring Boot的酒店住宿管理平台

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及,互联网成为人们查找信息的重要场所,二十一世纪是信息的时代,所以信息的管理显得特别重要。因此,使用计算机来管理酒店客房管理系统的相关信息成为必然。开发…...

游聚对战平台 三国战纪2012CE修改器修改地址

游聚对战平台 三国战纪2012比较全的一次地址。 工具 ce修改器 自行百度下载 1袖箭 2褐色鸡蛋 3毒堂 4飞盘 5火焰弹 6绿色鸡蛋 7金珠 8毒蝎 9毒镖 10铁莲花 11张陵剑 12张角巾 13太清丹经 14黄石公 15九节杖 16隐身衣 17神仙笔 18 玉蜂术(效果不明)19天师…...

Qt Creator中的项目栏

shadow build: [基础]Qt Creator 的 Shadow build(影子构建)-CSDN博客 影子构建:将源码路径和构建路径分开(生成的makefile文件和其他产物都不放到源码路径),以此来保证源码路径的清洁。 实验1: 我创建了两个项目:…...

keepalived+web 实现双机热备

环境:利用keeplived实现web服务器的双机热备(高可用) 注意: (1) 利用keeplivedweb做双击热备(高可用),最少需要两台服务器,可以实现多域名对应一个VIP,并且访问不同域名,显示不同主页&#xf…...

关于python的import

在Python中,import语句用于导入其他模块或模块中的特定部分,以便在代码中使用它们。这就可以重用代码,而不是每次都从头开始编写所有的功能。 基本用法 导入整个模块: import module_name 例如: import math print(…...

帕金森后期吞咽困难:破解难题,重拾生活美味!

在这个快节奏的时代,健康成为了我们最宝贵的财富。然而,对于帕金森病患者及其家庭而言,随着病情的进展,尤其是进入后期阶段,吞咽困难成为了他们不得不面对的严峻挑战。今天,就让我们一起走进这个温暖而坚韧…...

android 添加USB网卡并配置DNS

工作需要,需要使用TBox分享的网络,Android将TBox当作一个USB网卡,接下来就简单了,配置这个网卡的信息即可。 加载默认网卡的信息在frameworks/opt/net/ethernet/java/com/android/server/ethernet/EthernetTracker.java中 Ethern…...

【面试经典150】day 8

#1024程序员节 | 征文# 作为一个未来的程序员,现在我要继续刷题了。 力扣时刻。 目录 1.接雨水 2.罗马数字转整数 3.最后一个单词的长度 4.最长公共前缀 5.反转字符串中的单词 1.接雨水 好好好好好好,一开始就接雨水。我记得接了n次了。。。 痛苦战…...

Python -- 网络爬虫

Python – 网络爬虫 流程: 1. 连接链接获取页面内容(html文件); 2. 过滤获取需要信息(正则) [可能重复步骤1,2] ; 3. 存储文件到本地。一)网络连接获取页面内容 # 网络…...

【英特尔IA-32架构软件开发者开发手册第3卷:系统编程指南】2001年版翻译,2-5

文件下载与邀请翻译者 学习英特尔开发手册,最好手里这个手册文件。原版是PDF文件。点击下方链接了解下载方法。 讲解下载英特尔开发手册的文章 翻译英特尔开发手册,会是一件耗时费力的工作。如果有愿意和我一起来做这件事的,那么&#xff…...

设计模式4 适配器 (adapter)

一句话,适配器按照客户的需求, 适配当前已有的接口。 目标接口:reqeust() public interface Target {void request(); //this is client needed interface }已有接口:specificRequest package com.example.adapter;import android.uti…...

《分布式机器学习模式》:解锁分布式ML的实战宝典

在大数据和人工智能时代,机器学习已经成为推动技术进步的重要引擎。然而,随着数据量的爆炸性增长和模型复杂度的提升,单机环境下的机器学习已经难以满足实际需求。因此,将机器学习应用迁移到分布式系统上,成为了一个不…...

【项目实战】HuggingFace初步实战,使用HF做一些小型任务

Huggingface初步实战 一、前期准备工作二、学习pipline2.1.试运行代码,使用HuggingFace下载模型2.2. 例子1,情感检测分析(只有积极和消极两个状态)2.3. 例子2,文本生成 三、学会使用Tokenizer & Model3.1.tokenizer(分词器&am…...

堆的应用——堆排序和TOP-K问题

1.堆排序 想法⼀&#xff1a; 基于已有数组建堆、取堆顶元素完成排序。也就是利用写好的堆数据结构&#xff08;之前的文章有讲解&#xff09;&#xff0c;去实现排序。 void HeapSort(int* a, int n){HP hp;for(int i 0; i < n; i){HPPush(&hp,a[i]);}int i 0;whi…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后&#xff0c;迭代器会失效&#xff0c;因为顺序迭代器在内存中是连续存储的&#xff0c;元素删除后&#xff0c;后续元素会前移。 但一些场景中&#xff0c;我们又需要在执行删除操作…...