当前位置: 首页 > news >正文

【数据结构】贪心算法:决策的艺术

贪心算法(Greedy Algorithm)是一类在每一步选择中都采取局部最优解的方法,希望最终能够达到全局最优解。通俗地说,贪心算法的思想就是“每一步都尽量做出最好的选择”,以期望整个过程的最终结果也达到最优状态。贪心算法在解决某些特定问题时可以提供快速且高效的方案,因此广泛应用于路径选择、调度、资源分配等领域。

贪心算法的工作原理


算法实战:找零问题

假设我们需要找零的金额为 amount,并且我们有一些面值的硬币。贪心算法的目标是尽可能少地使用硬币来找零。我们将从面值最大的硬币开始找零。

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
// 找零函数
int coinChange(vector<int>& coins, int amount) {sort(coins.rbegin(), coins.rend()); // 从大到小排序int count = 0;for (int coin : coins) {while (amount >= coin) { // 当金额大于或等于硬币面值时amount -= coin; // 减去硬币面值count++; // 记录使用的硬币数量}}return amount == 0 ? count : -1; // 如果找零成功,返回硬币数量,否则返回-1
}int main() {vector<int> coins = {25, 10, 5, 1}; // 硬币面值int amount = 63; // 要找的金额int result = coinChange(coins, amount);if (result != -1) {cout << "最少需要使用的硬币数量: " << result << endl;} else {cout << "无法找零" << endl;}return 0;
}

实践中的挑战与扩展

虽然贪心算法在找零问题中表现出色,但并非所有硬币组合都能保证找到最优解。例如,若面值为 3 和 4 的硬币用于找零 6,贪心算法可能选择 4 + 3,而最优解为 3 + 3。这种情况下,动态规划将更适合解决问题,因为它能考虑所有可能的组合。

但通过动态规划解决的找零问题会考虑所有组合,确保最终解为全局最优。

如果不清除什么是动态规划的话可以去看我另外一篇文章

  • 【数据结构】动态规划:揭开算法优化的秘密
#include <iostream>
#include <vector>
#include <climits>
using namespace std;int coinChangeDP(vector<int>& coins, int amount) {vector<int> dp(amount + 1, INT_MAX);dp[0] = 0; // 基础情况for (int coin : coins) {for (int x = coin; x <= amount; x++) {if (dp[x - coin] != INT_MAX) {dp[x] = min(dp[x], dp[x - coin] + 1);}}}return dp[amount] == INT_MAX ? -1 : dp[amount];
}

贪心算法的优缺点

优点

  1. 高效:贪心算法的时间复杂度通常较低,在需要快速求解的情况下尤为适合。
  2. 实现简单:贪心算法的逻辑清晰,易于实现。它只需一步一步地做出决策,不需要复杂的回溯操作。
  3. 适用于动态数据:在许多实时计算中,贪心算法可以处理不断变化的数据,因为它只关心当前的最佳选择。

缺点

  1. 不能保证全局最优:贪心算法不能保证所有问题的最优解,有时会因局部选择导致全局次优解。
  2. 缺乏灵活性:贪心算法无法回溯,也不适合多步决策或组合问题。
  3. 适用范围有限:贪心算法主要适用于具有贪心选择性质和最优子结构性质的问题。

时空复杂度

如果不清除什么是时空复杂度的话可以去看我另外一篇文章

  • 【数据结构】时间复杂度和空间复杂度是什么?

时间复杂度

贪心算法的时间复杂度通常依赖于具体问题和实现方式。一般来说,它的时间复杂度可以通过以下几个方面进行分析:

  1. 排序:许多贪心算法需要对输入数据进行排序,例如在找零问题中,我们对硬币面值进行了排序。排序的时间复杂度为 ( O ( n log ⁡ n ) (O(n \log n) (O(nlogn),其中 ( n ) (n) (n) 是输入数据的规模。

  2. 遍历:贪心算法通常需要遍历输入数据,选择当前的最佳解。这个过程的时间复杂度通常为 (O(n)) 或 (O(m)),其中 (m) 是选定的子问题规模。

综合考虑,贪心算法的时间复杂度通常为 ( O ( n log ⁡ n ) ) (O(n \log n)) (O(nlogn)) ( O ( n ) ) (O(n)) (O(n)),具体取决于是否需要排序以及遍历的复杂性。

空间复杂度

贪心算法的空间复杂度通常较低,因为它通常不需要额外的存储空间来存储中间结果。常见的空间复杂度为:

  1. 输入数据存储:需要存储输入数据,时间复杂度与输入规模成正比,空间复杂度为 (O(n))。

  2. 常量空间:在大多数贪心算法中,只需使用常量空间来保存临时变量和结果,因此其额外空间复杂度通常为 (O(1))。

因此,贪心算法的空间复杂度一般为 (O(n)),但在许多情况下,其有效空间复杂度为 (O(1))。

复杂度总结

复杂度类型复杂度表达式说明
时间复杂度 ( O ( n log ⁡ n ) ) (O(n \log n)) (O(nlogn)) ( O ( n ) ) (O(n)) (O(n))取决于排序和遍历的复杂性
空间复杂度 ( O ( n ) ) (O(n)) (O(n)) ( O ( 1 ) ) (O(1)) (O(1))通常只需常量空间或输入空间

通过对时空复杂度的分析,我们可以更好地理解贪心算法的性能表现,并在实际应用中做出合理的选择。

常见应用

  • 最短路径问题

    在图算法中,Dijkstra算法就是一种基于贪心策略的算法,用来找到从起点到目标节点的最短路径。该算法在每一步选择当前节点的最短边,从而逐步构建最短路径。Dijkstra算法在权值非负的情况下非常有效,但在权值为负的情况下可能无法得到最优解。

  • 活动选择问题

    活动选择问题是典型的贪心算法应用之一。在一组互不相容的活动中,贪心算法可以帮助选择出最多的活动。例如,若有一组活动需要在不同时间段进行,使用贪心算法可以按活动的结束时间从早到晚排序,依次选择不冲突的活动,从而最大化活动数量。

  • 分数背包问题

    在背包问题中,贪心算法可用于求解“分数背包问题”,即物品可以按任意比例选择。贪心算法在此问题中选择单位重量价值最高的物品直到背包装满,从而实现价值最大化。

  • 区间调度问题

    区间调度问题是一种经典的贪心算法应用,它需要从一组区间中选择互不重叠的最大数量。贪心算法的策略是首先选择结束时间最早的区间,以便为后续区间腾出时间,从而实现最大化选择。

如何判断贪心算法是否适用?

在选择是否应用贪心算法时,通常需要满足以下两个条件:

  • 贪心选择性质:即可以通过局部最优解一步步获得全局最优解。
  • 最优子结构:问题可以通过子问题的最优解构建得到全局最优解。

如果问题不符合这两个条件,那么贪心算法可能不适用,可以考虑动态规划或回溯等更复杂的算法。

贪心算法与动态规划的区别

虽然贪心算法和动态规划都用于解决优化问题,但两者的策略截然不同。动态规划通过记忆化存储和子问题分解来保证全局最优解,而贪心算法则在每一步选择中追求最优。一般而言,当问题具有“贪心选择性质”和“最优子结构”时,贪心算法才适用;否则,动态规划可能是更好的选择。

贪心算法的实现步骤

在实际应用中,贪心算法的实现通常可以分为以下几步:

  1. 选择贪心策略:定义每一步的选择标准,确保每次选择局部最优。
  2. 构建选择序列:基于贪心策略逐步构建问题的解答。
  3. 验证全局解的可行性:确保贪心选择不会影响整体解的正确性。
  4. 执行选择:按照贪心策略选择直到获得最终解。

总结

贪心算法是一种高效、简便的算法,在特定条件下可以迅速求解最优问题。然而,贪心算法并非万全之策,适用于具有贪心选择性质和最优子结构的问题。它的应用领域广泛,涉及路径规划、活动选择、资源分配等多个方面。在选择是否使用贪心算法时,需要全面分析问题特点,确保其满足贪心算法的适用条件。

相关文章:

【数据结构】贪心算法:决策的艺术

贪心算法&#xff08;Greedy Algorithm&#xff09;是一类在每一步选择中都采取局部最优解的方法&#xff0c;希望最终能够达到全局最优解。通俗地说&#xff0c;贪心算法的思想就是“每一步都尽量做出最好的选择”&#xff0c;以期望整个过程的最终结果也达到最优状态。贪心算…...

Linux LVS详解

LVS&#xff08;Linux Virtual Server&#xff09;即Linux虚拟服务器&#xff0c;是一个基于Linux操作系统的高性能、可扩展的负载均衡器。以下是对LVS的详细介绍&#xff1a; 一、简介 LVS项目由章文嵩博士在1998年5月发起&#xff0c;是中国国内最早出现的自由软件项目之一…...

LabVIEW显微镜自动对焦系统

在生物医学研究中&#xff0c;显微镜图像的清晰度对于细胞分析非常重要。传统的手动对焦方法容易受到人为因素的影响&#xff0c;因此开发了一种自动对焦技术&#xff0c;以提高图像采集的准确性和效率。 自动对焦方法概述 该系统结合了图像清晰度评估和一维功能优化&#xff…...

基于IP的真实地址生成器

ip-geoaddress-generator 是一个基于 Web 的在线应用程序&#xff0c;能够根据 IP 地址生成真实的随机地址信息。通过多个 API 获取位置数据和随机用户信息&#xff0c;该工具为用户提供了完整的虚拟身份。它由 Next.js 和 Radix UI 构建&#xff0c;具备自动检测当前 IP 地址和…...

下面程序头的三个import语句可以合并或简化么?

下面程序头的三个import语句可以合并或简化么&#xff1f; from tkinter.simpledialog import askinteger from tkinter import * from tkinter import messagebox ——是的&#xff0c;三个import语句可以合并为一个。 合并后的import语句如下所示&#xff1a; from tkinte…...

深度学习--CNN实现猫狗识别二分类(附带下载链接, 长期有效)

1. 代码实现(包含流程解释) 样本量: 8005 # # 1.导入数据集(加载图片)数据预处理# 进行图像增强, 通过对图像的旋转 ,缩放,剪切变换, 翻转, 平移等一系列操作来生成新样本, 进而增加样本容量, # 同时对图片数值进行归一化[0:1] from tensorflow.keras.preprocessing.image …...

Depcheck——专门用于检测 JavaScript 和 Node.js 项目中未使用依赖项的工具

文章目录 Depcheck 是什麽核心功能&#x1f4da;检测未使用的依赖&#x1f41b;检测缺失的依赖✨支持多种文件类型&#x1f30d;可扩展性 安装与使用1. 安装 Depcheck2. 使用 Depcheck Depcheck 的应用总结项目源码&#xff1a; Depcheck 是什麽 来看一个常见错误场景&#x1…...

前端构建工具vite的优势

1. 极速冷启动 Vite 使用原生 ES 模块 (ESM) 在开发环境下进行工作。相比于传统构建工具需要打包所有的文件&#xff0c;Vite 只在浏览器请求模块时动态加载所需的文件。无打包冷启动&#xff1a;无需预先打包&#xff0c;项目启动非常快&#xff0c;尤其对于大型项目效果更明…...

hive查询语句

1.基本语法 SELECT [ALL | DISTINCT]select_expr, select_expr, ... FROM table_reference [WHERE where_condition] [GROUP BYcol_list] [HAVING where_condition] [ORDER BYcol_list] [CLUSTER BYcol_list | [DISTRIBUTE BY col_list] [SORT BY col_list] ] [LIMIT number] …...

【AIGC】2024-ECCV-ControlNet++:通过有效的一致性反馈改进条件控制

2024-ECCV-ControlNet: Improving Conditional Controls with Efficient Consistency Feedback ControlNet&#xff1a;通过有效的一致性反馈改进条件控制摘要1. 引言2. 相关工作2.1 基于扩散的生成模型2.2 可控的文本到图像扩散模型2.3 语言和视觉奖励模型 3. 方法3.1. 初步3.…...

Mysql5.7变为GreatSQL 8.0.32-25过程中,SQL语句报错及解决方案

考虑兼容国产化数据库&#xff0c;现需要将Mysql5.7变为GreatSQL&#xff0c;在执行部分sql时&#xff0c;发现在Mysql5.7无报错&#xff0c;在GreatSQL有报错&#xff0c;在此记录一下遇到的几个错误。 1.ERROR 1231 (NO_AUTO_CREATE_USER) 1.1.报错提示 ERROR 1231 (42000…...

Qt 使用QAxObject将QTableView数据导出到Excel表格

这是我记录Qt学习过程的第6篇心得文章&#xff0c;主要是方便自己编写的应用程序导出Excel数据的&#xff0c;走了不少弯路直接上代码。 实现代码&#xff1a; //人员信息导出 ui->pbtn2->setEnabled(false); // 打开文件对话框&#xff0c;选择 excel文件 QString fil…...

fastGpt

参考本地部署FastGPT使用在线大语言模型 1 rockylinx 1 ollama安装 在rockylinux中安装的&#xff0c;ollama由1.5G&#xff0c;还是比较大&#xff0c;所有采用在windows下下载&#xff0c;然后安装的方式&#xff0c;linux安装 tar -C /usr -xzf ollama-linux-amd64.tgz #…...

如何全方位应对服务可用性的挑战

在数字化转型的浪潮中&#xff0c;运维团队正站在企业IT架构的核心位置&#xff0c;面对着前所未有的挑战。服务响应时间和失败率&#xff0c;作为衡量服务质量的重要指标&#xff0c;一直备受关注。然而&#xff0c;在追求这两项指标优化的同时&#xff0c;运维团队还需关注其…...

二进制方式部署k8s集群

目标任务: 1、Kubernetes集群部署架构规划 2、部署Etcd数据库集群 3、在Node节点安装Docker 4、部署Flannel网络插件 5、在Master节点部署组件(api-server,schduler,controller-manager) 6、在Node节点部署组件(kubelet,kube-proxy) 7、查看集群状态 8、运行⼀个测…...

Vivado时序报告七:Report Clock NetworkReport Clock Interaction详解

目录 一、前言 二、Report Clock Network 2.1 Report Clock Network流程 2.2 Report Clock Network报告 三、Report Clock Interaction 3.1 示例设计 3.2 配置选项 3.2.1 Options 3.2.2 Timer_Settings 3.3 Clock Interaction报告 3.3.1 Clock Pair Classification …...

HarmonyOS 组件样式@Style 、 @Extend、自定义扩展(AttributeModifier、AttributeUpdater)

1. HarmonyOS Style 、 Extend、自定义扩展&#xff08;AttributeModifier、AttributeUpdater&#xff09; Styles装饰器&#xff1a;定义组件重用样式   ;Extend装饰器&#xff1a;定义扩展组件样式   自定义扩展&#xff1a;AttributeModifier、AttributeUpdater 1.1. 区…...

信息安全工程师(73)网络安全风险评估过程

一、确定评估目标 此阶段需要明确评估的范围、目标和要求。评估目标通常包括特定的网络系统、信息系统或网络基础设施&#xff0c;评估范围可能涉及整个组织或仅特定部门。明确评估要求有助于确保评估过程的针对性和有效性。 二、收集信息 在评估开始之前&#xff0c;需要对目标…...

在MacOS玩RPG游戏 - RPGViewerPlus

背景知识 由于我一直使用Mac电脑&#xff0c;所以一直对Mac如何玩RPGMV/RPGMZ游戏的方式有进一步的想法。 网上能给出的方案都是自行启动一个HTTP服务进行&#xff0c;进行服务加载。这个方法有效&#xff0c;但兼容性较差。涉及到自定义功能模块的游戏&#xff0c;都会有报错…...

2024.10.27 直接插入排序 非递归后序遍历(复杂版)

直接插入排序 思路&#xff1a;用temp变量存放需要插入前面有序序列的变量&#xff0c;然后用里面的那个for循环寻找到需要插入的位置。 额外注意的点&#xff1a;arr[j1]temp;这个是因为内置循环每次出来之后所指向的位置是我们要插入的位置的前一个&#xff08;-1或者插入…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

CSS | transition 和 transform的用处和区别

省流总结&#xff1a; transform用于变换/变形&#xff0c;transition是动画控制器 transform 用来对元素进行变形&#xff0c;常见的操作如下&#xff0c;它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...