当前位置: 首页 > news >正文

监督学习之逻辑回归

逻辑回归(Logistic Regression)

逻辑回归是一种用于二分类(binary classification)问题的统计模型。尽管其名称中有“回归”二字,但逻辑回归实际上用于分类任务。它的核心思想是通过将线性回归的输出映射到一个概率值,以进行类别预测。

1. 模型概述

逻辑回归的基本公式为:

P ( y = 1 ∣ x ) = σ ( z ) = 1 1 + e − z P(y=1|x) = \sigma(z) = \frac{1}{1 + e^{-z}} P(y=1∣x)=σ(z)=1+ez1

其中:

  • ( P ( y = 1 ∣ x P(y=1|x P(y=1∣x) ) 是给定特征 ( x x x ) 时,因变量 ( y y y ) 等于 1 的概率。
  • ( z = β 0 z = \beta_0 z=β0 + β 1 x 1 \beta_1x_1 β1x1 + β 2 x 2 \beta_2 x_2 β2x2 + … \ldots + β n x n \beta_n x_n βnxn ) 是线性组合。
  • ( σ ( z ) \sigma(z) σ(z) ) 是 sigmoid 函数,将输出值映射到 0 0 0 1 1 1之间。
2. Sigmoid 函数

Sigmoid 函数的形状如下:

σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1

  • 当 ( z z z ) 为负时,函数输出接近于 0 0 0;当 ( z z z ) 为正时,函数输出接近于 1 1 1
  • 这种特性使得 sigmoid 函数非常适合用于概率预测。
3. 损失函数

逻辑回归的损失函数为交叉熵损失(cross-entropy loss),用于衡量模型预测与实际标签之间的差异。其公式为:

L ( β ) = − 1 N ∑ i = 1 N [ y i log ⁡ ( y ^ i ) + ( 1 − y i ) log ⁡ ( 1 − y ^ i ) ] L(\beta) = -\frac{1}{N} \sum_{i=1}^{N} [y_i \log(\hat{y}_i) + (1-y_i) \log(1-\hat{y}_i)] L(β)=N1i=1N[yilog(y^i)+(1yi)log(1y^i)]

其中:

  • ( N N N ) 是样本数量。
  • ( y i y_i yi ) 是实际标签。
  • ( y ^ i \hat{y}_i y^i ) 是预测概率。

逻辑回归的损失函数求解通常通过 最大似然估计梯度下降 等优化算法进行。逻辑回归模型中常用的损失函数是 交叉熵损失,目标是通过最小化损失函数来找到最佳的模型参数。

1. 逻辑回归中的损失函数

(1)损失函数

逻辑回归的损失函数基于交叉熵(Cross-Entropy Loss),用于衡量模型预测的概率分布与实际标签之间的差异。对于二分类问题,其形式为:

L ( β ) = − 1 N ∑ i = 1 N [ y i log ⁡ ( y ^ i ) + ( 1 − y i ) log ⁡ ( 1 − y ^ i ) ] L(\beta) = - \frac{1}{N} \sum_{i=1}^{N} \left[ y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i) \right] L(β)=N1i=1N[yilog(y^i)+(1yi)log(1y^i)]

其中:

  • ( N N N ) 是样本数量。
  • ( y i y_i yi ) 是第 ( i i i ) 个样本的真实标签( 0 0 0 1 1 1)。
  • ( y ^ i = σ ( z i ) \hat{y}_i = \sigma(z_i) y^i=σ(zi) ) 是第 ( i i i ) 个样本的预测概率。
  • ( z i = β 0 + β 1 x i 1 + β 2 x i 2 + ⋯ + β n x i n z_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_n x_{in} zi=β0+β1xi1+β2xi2++βnxin ) 是线性组合。
  • ( σ ( z ) \sigma(z) σ(z) ) 是 sigmoid 函数,定义为:
    σ ( z ) = 1 1 + e − z \sigma(z) = \frac{1}{1 + e^{-z}} σ(z)=1+ez1
    这将线性回归的输出 ( z z z ) 映射到 ( ( 0 0 0, 1 1 1) ) 之间,作为类别为 1 1 1 的预测概率。
(2)如何求解损失函数

求解逻辑回归的损失函数通常使用 梯度下降 等优化方法。目标是找到使损失函数最小的参数 ( β \beta β ),即 最小化交叉熵损失。求解过程可以概括为以下步骤:

** 计算梯度**

为了最小化损失函数,我们需要对每个参数 ( β j \beta_j βj) 计算损失函数的偏导数(即梯度),并通过优化算法(如梯度下降)进行更新。

对于交叉熵损失函数,梯度计算公式为:

∂ L ∂ β j = − 1 N ∑ i = 1 N ( y i − y ^ i ) x i j \frac{\partial L}{\partial \beta_j} = -\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i) x_{ij} βjL=N1i=1N(yiy^i)xij
其中:

  • ( x i j x_{ij} xij ) 是第 ( i i i ) 个样本的第 ( j j j ) 个特征。
  • ( y i y_i yi ) 是第 ( i i i ) 个样本的实际标签。
  • ( y ^ i \hat{y}_i y^i) 是第 ( i i i ) 个样本的预测概率。

使用梯度下降更新参数梯度下降法通过以下公式迭代更新参数:

β j = β j − α ∂ L ∂ β j \beta_j = \beta_j - \alpha \frac{\partial L}{\partial \beta_j} βj=βjαβjL

其中:

  • ( α \alpha α ) 是学习率(控制每次更新步长的大小)。
  • ( ∂ L ∂ β j \frac{\partial L}{\partial \beta_j} βjL ) 是损失函数对参数 ( β j \beta_j βj ) 的梯度。

通过不断更新参数,使得损失函数逐渐减小,直到达到全局或局部最优解。

(3) 代码示例:逻辑回归中的梯度下降

以下是使用 Python 实现逻辑回归梯度下降的示例:

import numpy as np# Sigmoid 函数
def sigmoid(z):return 1 / (1 + np.exp(-z))# 损失函数 (交叉熵)
def compute_loss(y, y_pred):return -np.mean(y * np.log(y_pred) + (1 - y) * np.log(1 - y_pred))# 梯度下降算法
def gradient_descent(X, y, learning_rate=0.1, num_iterations=1000):m, n = X.shapebeta = np.zeros(n)  # 初始化参数for i in range(num_iterations):z = np.dot(X, beta)y_pred = sigmoid(z)gradients = np.dot(X.T, (y_pred - y)) / mbeta -= learning_rate * gradientsif i % 100 == 0:loss = compute_loss(y, y_pred)print(f"Iteration {i}: Loss = {loss}")return beta# 示例数据
X = np.array([[1, 2], [1, 3], [2, 2], [2, 3]])  # 样本数据
y = np.array([0, 0, 1, 1])  # 标签数据# 在样本数据前面加一列 1 用于偏置项 (截距项)
X_bias = np.c_[np.ones(X.shape[0]), X]# 运行梯度下降求解参数
beta = gradient_descent(X_bias, y)
print("求解得到的参数:", beta)
4. 优缺点

优点

  • 简单易懂:逻辑回归模型简单,易于实现和解释。
  • 概率输出:模型输出的是预测的概率,可以用于更细致的决策。
  • 适用于线性可分问题:在特征与目标变量之间存在线性关系时,表现良好。

缺点

  • 线性假设:假设特征与目标之间存在线性关系,不适用于复杂的非线性关系。辑回归假设特征和类别之间的关系是线性的,对于复杂非线性问题,表现不如其他模型(如决策树、神经网络)。
  • 受特征选择影响:模型对输入特征敏感,需要合适的特征选择和处理。
  • 容易过拟合:在特征数量较多时,可能会发生过拟合,特别是当样本量不足时。
  • 无法解决多分类问题:标准的逻辑回归只适用于二分类问题,若要应用于多分类问题,需要使用 Softmax 回归或一对多策略。

5. 代码示例

以下是使用 Python 的 scikit-learn 库实现逻辑回归的示例:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report# 生成示例数据
X, y = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=2, n_redundant=0, random_state=42)# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)# 进行预测
y_pred = model.predict(X_test)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
conf_matrix = confusion_matrix(y_test, y_pred)
class_report = classification_report(y_test, y_pred)print("准确率:", accuracy)
print("混淆矩阵:\n", conf_matrix)
print("分类报告:\n", class_report)# 绘制决策边界
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='coolwarm', edgecolors='k')
xlim = plt.gca().get_xlim()
ylim = plt.gca().get_ylim()xx, yy = np.meshgrid(np.linspace(xlim[0], xlim[1], 100), np.linspace(ylim[0], ylim[1], 100))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, alpha=0.3, cmap='coolwarm')
plt.title('逻辑回归决策边界')
plt.xlabel('特征1')
plt.ylabel('特征2')
plt.show()

结果
在这里插入图片描述

在这里插入图片描述

6. 总结

逻辑回归是一种简单而有效的分类模型,适合于解决二分类问题。尽管它有一些局限性(如线性假设),但在许多实际应用中,逻辑回归因其易于解释和实现而被广泛使用。通过合适的特征选择和数据处理,逻辑回归能够在很多情况下提供可靠的分类结果。

相关文章:

监督学习之逻辑回归

逻辑回归(Logistic Regression) 逻辑回归是一种用于二分类(binary classification)问题的统计模型。尽管其名称中有“回归”二字,但逻辑回归实际上用于分类任务。它的核心思想是通过将线性回归的输出映射到一个概率值…...

深度优先算法(DFS)洛谷P1683-入门

虽然洛谷是有题解的,但是你如果直接看得懂题解,你也不会来看这篇文章.. 这些代码均是我记录自身成长的记录,有写的不好的地方请谅解&#xff01; 先上代码&#xff1a; #include <iostream> #include <vector> #include<iomanip> #include<cstdio&…...

Python数据分析基础

本文介绍了Python在数据分析中的应用&#xff0c;包括数据读取、清洗、处理和分析的基本操作。通过使用Pandas和Numpy库&#xff0c;我们可以高效地处理大量数据&#xff0c;并利用Matplotlib和Seaborn库进行数据可视化。 1. 引言 Python因其简洁的语法和强大的库支持&#x…...

《企业自设2-软件测试》线下课day3: 006扩展虚拟机

1.win11 修改hosts无权限 分别再cmd终端输入以下两行代码&#xff1a; C:\Windows\System32\drivers\etcnotepad hosts 2.先保存快照&#xff01;&#xff01;&#xff01; 3.关闭虚拟机&#xff0c;将内存&#xff0c;CPU进行修改 就是再这个位置修改&#xff1a; 4.运…...

配置和排查 Lombok 在 IDEA 中使用的详细步骤

在日常开发中&#xff0c;Java 代码常常需要大量的样板代码&#xff0c;比如 getter、setter、toString 等方法。Lombok 是一个 Java 库&#xff0c;可以通过注解的方式&#xff0c;自动生成这些常见的代码&#xff0c;从而让代码更加简洁、清晰。比如&#xff0c;我们可以通过…...

JavaWeb合集18-接口管理Swager

十八、接口管理 1、Swager 使用Swagger你只需要按照它的规范去定义接口及接口相关的信息&#xff0c;就可以做到生成接口文档&#xff0c;以及在线接口调试页面。 官网: https://swagger.io/ Knife4j是为Java MVC框架集成Swagger生成Api文档的增强解决方案。 <dependency&g…...

背包九讲——二维费用背包问题

目录 二维费用背包问题 问题描述&#xff1a; 解决方法&#xff1a; 方法一&#xff1a; 代码实现&#xff1a; 方法二&#xff1a; 代码实现&#xff1a; 背包问题第五讲——二维费用背包问题 背包问题是一类经典的组合优化问题&#xff0c;通常涉及在限定容量的背包中…...

【mysql进阶】4-7. 通用表空间

通⽤表空间 - General Tablespace 1 通⽤表空间的作⽤和特性&#xff1f; ✅ 解答问题 通⽤表空间是使⽤ CREATE tablespace 语法创建的共享InnoDB表空间 通⽤表空间能够存储多个表的数据&#xff0c;与系统表空间类似也是共享表空间&#xff1b; 服务器运⾏时会把表空间元数…...

2024 年互联网大厂 1300 多道 JAVA 面试题汇总,包含了程序员的所有技术点

作为一个 Java 程序员&#xff0c;你平时总是陷在业务开发里&#xff0c;每天噼里啪啦忙敲着代码&#xff0c;上到系统开发&#xff0c;下到 Bug 修改&#xff0c;你感觉自己无所不能。然而偶尔的一次聚会&#xff0c;你听说和自己一起出道的同学早已经年薪 50 万&#xff0c;而…...

【开源免费】基于SpringBoot+Vue.JS在线文档管理系统(JAVA毕业设计)

本文项目编号 T 038 &#xff0c;文末自助获取源码 \color{red}{T038&#xff0c;文末自助获取源码} T038&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…...

Linux资源与网络请求

参数说明&#xff1a; d : 改变显示的更新速度&#xff0c;或是在交谈式指令列( interactive command)按 sq : 没有任何延迟的显示速度&#xff0c;如果使用者是有 superuser 的权限&#xff0c;则 top 将会以最高的优先序执行c : 切换显示模式&#xff0c;共有两种模式&#…...

RPA技术重塑企业自动化的未来

1. RPA定义与原理 1.1 机器人流程自动化(RPA)概念 机器人流程自动化&#xff08;Robotic Process Automation&#xff0c;简称RPA&#xff09;是一种软件技术&#xff0c;通过模拟人类用户在计算机界面上的操作来执行重复性的业务流程任务。RPA软件机器人能够自动执行基于规则…...

使用RabbitMQ实现延迟消息的完整指南

在分布式系统中&#xff0c;消息队列通常用于解耦服务&#xff0c;RabbitMQ是一个广泛使用的消息队列服务。延迟消息&#xff08;也称为延时队列或TTL消息&#xff09;是一种常见的场景应用&#xff0c;特别适合处理某些任务在一段时间后执行的需求&#xff0c;如订单超时处理、…...

阿里员工:阿里工作7年至少得P7吧,快的都P8了,年薪100W是正常的,80才算及格...

上一篇&#xff1a;一线体面男的收入 年薪64W的阿里蚂蚁员工爆料&#xff1a;在阿里&#xff0c;工作7年至少得P7&#xff0c;快的都P8了&#xff0c;年薪100W才正常&#xff0c;80分才算及格。 其实&#xff0c;在大厂工作&#xff0c;听起来风光无限&#xff0c;但个中滋味&a…...

Django进一步掌握(10月22日)

一、请求响应对象 请求对象request 响应对象HttpResponse 二、HttpResponse常用属性 status设置HTTP响应状态码 status_code查询HTTP响应状态码 content_type设置响应的类型 write()写入响应内容 三、重定向 1、实现URl访问的重定向 &#xff08;1&#xff09;使用Ht…...

C++从入门到起飞之——红黑树封装map和set 全方位剖析!

目录 1、map和set的整体框架 2、map和set迭代器的实现 3、map支持[] 4、完整源码 set.h map.h RBTree.h 1、map和set的整体框架 因为map和set的底层都是红黑树&#xff0c;所以我们考虑用一个红黑树的类模版去实例化map和set对象&#xff01;不过&#xff0c;map节点中存…...

【javax maven项目缺少_Maven的依赖管理 引入依赖】

javax maven项目缺少_Maven的依赖管理 引入依赖 Maven的依赖管理 - 引入依赖依赖管理(引入依赖)导入依赖 https://blog.csdn.net/weixin_28932089/article/details/112381468 Maven的依赖管理 - 引入依赖 依赖管理(引入依赖) 能够掌握依赖引入的配置方式 导入依赖 导入依赖练…...

手搓一个定时器

目录 1.什么是定时器 2.计时器的使用 3.手搓定时器 3.1定义一个TimerTask类 3.2定义一个Timer类 3.3实现schedule方法 3.4实现Timer的构造方法 3.4.1随时随地查看优先级队列中是否有任务要执行 3.4.2获取队首任务&#xff0c;并判断是否到执行时间 3.4.3到达执行时间…...

AI提示词工程优化Prompt-GPT使用手册(科普一键收藏史上最强攻略)

Prompt(提示)&#xff0c;最初是 NLP 研究者为下游任务设计出来的一种任务专属的输入形式或模板。在 ChatGPT 引发大语言模型新时代之后&#xff0c;Prompt 指与大模型交互输入的代称。 随着大模型的进展&#xff0c;Prompt Engineering是一个持久的探索过程。 目录 什么是提示…...

【数据结构】快速排序(三种实现方式)

目录 一、基本思想 二、动图演示&#xff08;hoare版&#xff09; 三、思路分析&#xff08;图文&#xff09; 四、代码实现&#xff08;hoare版&#xff09; 五、易错提醒 六、相遇场景分析 6.1 ❥ 相遇位置一定比key要小的原因 6.2 ❥ 右边为key&#xff0c;左边先走 …...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...