#深度学习:从基础到实践
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。
1. 深度学习的基础
1.1 人工神经网络
深度学习是基于人工神经网络(Artificial Neural Network, ANN)的一种机器学习方法。ANN由大量相互连接的神经元组成,模拟人脑的工作机制,通过反复学习和调整权重来解决复杂问题。
1.2 前馈神经网络
最简单的神经网络结构是前馈神经网络(Feedforward Neural Network)。数据从输入层开始,通过隐藏层的非线性变换,最终输出预测结果。这种网络结构简单易用,适用于多种机器学习任务。
import numpy as np
import tensorflow as tf# 构建一个简单的前馈神经网络
model = tf.keras.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(10,)),tf.keras.layers.Dense(32, activation='relu'),tf.keras.layers.Dense(1, activation='sigmoid')
])model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
1.3 激活函数
激活函数是神经网络中非线性变换的关键。常见的激活函数有 ReLU、Sigmoid、Tanh 等,它们能够赋予神经网络强大的表达能力。
2. 深度学习的主要算法
2.1 卷积神经网络(CNN)
CNN 是深度学习的重要分支,在图像和视频处理领域取得了巨大成功。它利用卷积操作提取局部特征,并通过池化层缩减参数,能够高效地学习图像的层次化表征。
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense# 构建一个简单的 CNN 模型
model = Sequential([Conv2D(32, (3,3), activation='relu', input_shape=(28, 28, 1)),MaxPooling2D((2,2)),Conv2D(64, (3,3), activation='relu'),MaxPooling2D((2,2)),Flatten(),Dense(128, activation='relu'),Dense(10, activation='softmax')
])
2.2 循环神经网络(RNN)
RNN 擅长处理序列数据,如文本、语音和时间序列数据。它通过"记忆"之前的输入来预测当前输出,适用于语言模型、机器翻译等任务。
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense# 构建一个简单的 RNN 模型
model = Sequential([LSTM(64, input_shape=(None, 10)),Dense(1, activation='linear')
])
2.3 生成对抗网络(GAN)
GAN 由两个相互竞争的神经网络组成:生成器和判别器。生成器学习产生逼真的样本,判别器学习识别真实样本和生成样本。GAN 在图像生成、文本生成等领域有广泛应用。
import tensorflow as tf
from tensorflow.keras.models import Sequential, Model
from tensorflow.keras.layers import Dense, Reshape, Conv2DTranspose, Conv2D, Flatten, LeakyReLU, BatchNormalization# 构建一个简单的 GAN 模型
generator = Sequential([Dense(7*7*256, input_dim=100),Reshape((7, 7, 256)),Conv2DTranspose(128, (5,5), strides=(1,1), padding='same'),LeakyReLU(0.2),Conv2DTranspose(64, (5,5), strides=(2,2), padding='same'),LeakyReLU(0.2),Conv2DTranspose(1, (5,5), strides=(2,2), padding='same', activation='tanh')
])discriminator = Sequential([Conv2D(64, (5,5), strides=(2,2), padding='same', input_shape=(28,28,1)),LeakyReLU(0.2),Conv2D(128, (5,5), strides=(2,2), padding='same'),LeakyReLU(0.2),Flatten(),Dense(1, activation='sigmoid')
])
3. 深度学习的实践应用
深度学习广泛应用于各个领域,如计算机视觉、自然语言处理、语音识别、医疗诊断、金融风控等。以下是几个实际案例:
3.1 图像分类
利用 CNN 对图像进行分类,广泛应用于医疗影像诊断、自动驾驶等场景。
3.2 语音识别
利用 RNN 建立端到端的语音识别系统,可以转换语音为文字。
3.3 文本生成
利用 GAN 生成逼真的文本内容,可用于对话系统、新闻写作辅助等。
学习资源推荐
- 书籍:
- 《深度学习》(Ian Goodfellow等著)
- 《Python 深度学习》(Francois Chollet著)
- 在线课程:
- Coursera 和 edX 上的深度学习课程
- Udemy 上的 TensorFlow 实战课程
- 官方文档:
- TensorFlow 官方文档
- PyTorch 官方文档
- 博客和社区:
- 机器之心
- Towards Data Science
- Stack Overflow
总结
深度学习作为人工智能的核心技术之一,正在快速发展并应用于各个领域。通过理解深度学习的基础知识、主要算法以及实践案例,您可以掌握这一前沿技术,并运用它解决实际问题。坚持学习和实践,相信您一定能成为深度学习领域的专家。
相关文章:
#深度学习:从基础到实践
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速…...
Android Kotlin中协程详解
博主前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住也分享一下给大家, 👉点击跳转到教程 前言 Kotlin协程介绍: Kotlin 协程是 Kotlin 语言中的一种用于处理异步编程的机制。它提供了一…...
【webpack学习】
webpack由于历史包袱导致复杂,只要把握关键流程即可 webpack的主要流程loader plugin难点:HMR / 懒加载 原理webpack 的优化手段 构建工具对比 webpack :可以打包任何资源,配置略复杂,适合项目开发rollup࿱…...
H5实现PDF文件预览,使用pdf.js-dist进行加载
H5实现PDF文件预览,使用pdf.js-dist进行加载 一、应用场景 在H5平台上预览PDF文件是在原本已经开发完成的系统中新提出的需求,原来的系统业务部门是在PC端进行PDF的预览与展示,但是现在设备进行了切换,改成了安卓一体机进行文件…...
面试域——面试系统工程
摘要 1. 当前就业面试场景 1.1. 招聘市场的“551 定律” 你知道招聘市场的“551 定律”吗? 551 定律:每一层筛选环节都会有百分之十的折损率。一个岗位从接收简历到发下 Offer 至少要筛选 500 份左右的简历、面试 50 人左右、只有 5 人左右通过面试&am…...
PHP-FPM 性能配置优化
4 核 8 G 服务器大约可以开启 500 个 PHP-FPM,极限吞吐量在 580 qps (Query Per Second 每秒查询数)左右。 Nginx php-fpm 是怎么工作的? php-fpm 全称是 PHP FastCGI Process Manager 的简称,从名字可得知ÿ…...
渗透测试-百日筑基—SQL注入篇时间注入绕过HTTP数据编码绕过—下
day8-渗透测试sql注入篇&时间注入&绕过&HTTP数据编码绕过 一、时间注入 SQL注入时间注入(也称为延时注入)是SQL注入攻击的一种特殊形式,它属于盲注(Blind SQL Injection)的一种。在盲注中,攻击…...
Unity - UGUI动静分离
原理:UGUI 是基于Canvas来进行合并计算的 1.不同Cavans的UI元素,是无法合批渲染,无法实现同一个drawcall 2. 每次合批的时候,会合并计算Canvas下所有的UI元素 , 具体流程: Step1: 对Cavans下所有的UI元素进行合批计算 Step2: …...
arm 体系架构-过程调用约定
ref: ARM体系结构学习笔记:过程调用标准AAPC、 ARM32调用约定、ARM64调用约定_arm64 传参 结构体-CSDN博客 ARM软件逆向工程入门 01 - ARM调用约定(Calling Convention)_armv7函数调用约定-CSDN博客 ARM学习(17&…...
STM32基于LL库的USART+DMA使用
时隔两年半再次更新LL库,本次带来USART DMA 实现接收不定长。 1、开发思路 使用USART DMA接收不定长的功能的思路是:借助USART的空闲中断、DMA发送完成中断。 打开F103的手册可得知,USART的空闲中断触发条件是在接收完成后触发࿰…...
设计模式06-结构型模式1(适配器/桥接/组合模式/Java)
#1024程序员节|征文# 4.1 适配器模式 结构型模式(Structural Pattern)的主要目的就是将不同的类和对象组合在一起,形成更大或者更复杂的结构体。结构性模式的分类: 类结构型模式关心类的组合,由多个类…...
【损害和风险评估&坑洼】路面坑洼检测系统源码&数据集全套:改进yolo11-DCNV3
改进yolo11-DLKA等200全套创新点大全:路面坑洼检测系统源码&数据集全套 1.图片效果展示 项目来源 人工智能促进会 2024.10.24 注意:由于项目一直在更新迭代,上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者视频可…...
GenAI 生态系统现状:不止大语言模型和向量数据库
自 20 个月前 ChatGPT 革命性的推出以来,生成式人工智能(GenAI)领域经历了显著的发展和创新。最初,大语言模型(LLMs)和向量数据库吸引了最多的关注。然而,GenAI 生态系统远不止这两个部分&#…...
gitlab 配置ssh keys
settings -- 终端配置: git config --global user.email "yxthotmail.cm" 配置gitlab 账号邮箱 git config --global user.name "xt.yao" 配置gitlab账号用户名 生成SSH key,输入命令ssh-keygen -t rsa,一直按回车…...
小程序开发实战:PDF转换为图片工具开发
目录 一、开发思路 1.1 申请微信小程序 1.2 编写后端接口 1.3 后端接口部署 1.4 微信小程序前端页面开发 1.5 运行效果 1.6 小程序部署上线 今天给大家分享小程序开发系列,PDF转换为图片工具的开发实战,感兴趣的朋友可以一起来学习一下!…...
我有两台120kw充电桩一天能赚多少钱
(当前是理想状态下,当然还要看场地费用,还有物业,变压器,等等) ———————————————————— ———————————————————— 要计算两台120kW充电桩能赚多少钱,我们…...
深入了解 Android 中的命名空间:`xmlns:tools` 和其他常见命名空间
在 Android 开发中,xmlns (.xml的namespace)命名空间是一个非常重要的概念。通过引入不同的命名空间,可以使用不同的属性来设计布局、设置工具属性或者支持自定义视图等。除了 xmlns:tools 以外,还有很多常见的命名空间…...
stable-zero123模型构建指南
一、介绍 stabilityai出品,能够对有简单背景的物体进行三维视角图片的生成,简单来说也就是通过调整变换观察的视角生成对应视角的图片。 本项目通过comfyui实现。 二、容器构建说明 1. 部署ComfyUI (1)使用命令克隆ComfyUI g…...
算法题解记录32+++最长连续序列(百题筑基)
你们好,我是蚊子码农,好久不见。由于秋招求职的繁琐事情,我有很长一段时间没更新博客,希望我的粉丝们能够谅解。 秋招我拿到了一些offer,最终决定去一个主要做“网络安全”业务的公司工作,也许明天会更好&a…...
全球知名度最高的华人起名大师颜廷利:世界顶级思想哲学教育家
全国给孩子起名最好的大师颜廷利教授在其最新的哲学探索中,提出了《升命学说》这一前沿理论观点,该理论不仅深刻地回应了古今中外众多哲学流派和思想体系的精髓,还巧妙地融合了实用主义、理想主义以及经验主义的核心理念。通过这一独特的视角…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式
简介 在我的 QT/C 开发工作中,合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式:工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...
