当前位置: 首页 > news >正文

预测房价学习

1. 实现函数来方便下载数据

import hashlib
import os
import tarfile
import zipfile
import requestsDATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'def download(name, cache_dir=os.path.join('..', 'data')):"""下载一个DATA_HUB中的文件,返回本地文件名"""assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split('/')[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, 'rb') as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname  # 命中缓存print(f'正在从{url}下载{fname}...')r = requests.get(url, stream=True, verify=True)with open(fname, 'wb') as f:f.write(r.content)
return fname

2.使用pandas读入并处理数据

%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2lDATA_HUB['kaggle_house_train'] = (DATA_URL + 'kaggle_house_pred_train.csv','585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = (DATA_URL + 'kaggle_house_pred_test.csv','fa19780a7b011d9b009e8bff8e99922a8ee2eb90')train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))print(train_data.shape)
print(test_data.shape)

3.查看前四个和最后两个特征以及相应标签(房价)

print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])

4. 在每个样本中,第一个特征是ID,有助于模型识别每个训练样本。 虽然这很方便,但它不携带任何用于预测的信息。因此,在将数据提供给模型之前,将其从数据集中删除。

all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))

5.将所有缺失的值替换为相应特征的平均值,通过将特征重新缩放到零均值和单位方差来标准化数据

numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
all_features[numeric_features] = all_features[numeric_features].fillna(0)

6.处理离散值,诸如“MSZoning”之类特征,用独热编码替换

all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape

7.用价格预测的对数来衡量差异

def log_rmse(net, features, labels):# 为了在取对数时进一步稳定该值,将小于1的值设置为1clipped_preds = torch.clamp(net(features), 1, float('inf'))rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels)))return rmse.item()

8.训练函数借助Adam优化器(对初始学习率不那么敏感)

def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []train_iter = d2l.load_array((train_features, train_labels), batch_size)# 这里使用的是Adam优化算法optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate,weight_decay = weight_decay)for epoch in range(num_epochs):for X, y in train_iter:optimizer.zero_grad()l = loss(net(X), y)l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_ls

9.K折交叉验证

def get_k_fold_data(k, i, X, y):assert k > 1fold_size = X.shape[0] // kX_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx]if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat([X_train, X_part], 0)y_train = torch.cat([y_train, y_part], 0)return X_train, y_train, X_valid, y_valid

10. 在K折交叉验证中训练K次后,返回训练和验证误差的平均值

def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net()train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, 'f'验证log rmse{float(valid_ls[-1]):f}')return train_l_sum / k, valid_l_sum / k

相关文章:

预测房价学习

1. 实现函数来方便下载数据 import hashlib import os import tarfile import zipfile import requestsDATA_HUB dict() DATA_URL http://d2l-data.s3-accelerate.amazonaws.com/def download(name, cache_diros.path.join(.., data)):"""下载一个DATA_HUB中…...

电脑无法上网,但是微信、QQ可以正常使用

这种情况一般是由于DNS服务器配置错误,或者已有的DNS服务器无法正常解析地址造成的。 按下winR打开运行,输入ncpa.cpl,点击确定。 在打开的网络连接窗口中找到对应的网卡,双击打开。一般有线网是“以太网”,无线网&am…...

C++11新特性(列表初始化与右值引用折叠与完美转发)

c11 列表初始化c98的{}c11的{}std::initializer_list 右值引用和移动语义左值和右值的概念左值引用和右值引用引用延长临时对象生命周期左值和右值的参数匹配左值引用的主要使用场景移动构造和移动赋值引用折叠完美转发 列表初始化 c98的{} 在C98中,大括号 {} 的使…...

基于SSH的物流运输货运车辆管理系统源码

基于经典的ssh(Spring Spring MVC Hibernate)框架与SaaS(软件即服务)模式,我们为运输企业与物流公司打造了一款开源且易用的车辆管理系统。 该系统主要包含以下核心模块: 档案管理 财务管理 借款管理 保…...

基于RabbitMQ,Redis,Redisson,RocketMQ四种技术实现订单延时关闭功能及其相关优缺点介绍(以12306为主题)

目录 1. 延迟关闭订单 1.1 订单延时关闭功能技术选型 1.1.1 定时任务 1.1.2 RabbitMQ 1.1.3 Redis 过期监听 1.1.4 Redisson 1.1.5 RocketMQ 1.2 RocketMQ订单延时关闭发送方实现 1.3 RocketMQ订单延时关闭的消费方实现 1. 延迟关闭订单 用户发起订单后,如…...

HarmonyOS ArkTS与C++数据类型转换

1. HarmonyOS ArkTS与C数据类型转换 本文介绍了C与TS各自数据类型与互相之间的数据类型转换,在需要使用C模块时可以快速上手对各种数据类型进行转换。 1.1. 概述 HarmonyOS的主力开发语言是ArkTS,也提供了C语言的支持,对于一些能力&#xff…...

腾讯云或阿里云centos7安装Redis,并解决端口无法访问的问题

问题背景 最近自建的网站JeecgFlow在云环境安装redis时候,出现端口无法远程进行访问。 浪费好了好久时间进行排查, 记录一下Redis在云环境centos7环境下如何安装,并且远程访问。 Redis安装 //安装c 用于编译redis yum install gcc-c//在/u…...

【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界

【1】OFDM Radar Algorithms in Mobile Communication Networks pp34 文章目录 1. 频率和距离之间的关系2. 计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的导数3. 将频率的方差转化为距离的方差4. 从频率的 CRB 获得 var ⁡ [ n ^ ] \operatorname{var}[\hat{n}] var[n^]5. 将 …...

Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容

介绍 在当今数据驱动的世界中,抓取动态网页内容变得越来越重要,尤其是像抖音这样的社交平台,动态加载的评论等内容需要通过特定的方式来获取。传统的静态爬虫方法难以处理这些由JavaScript生成的动态内容,Selenium爬虫技术则是一…...

Z-BlogPHP显示错误Undefined array key 0 (set_error_handler)的解决办法

今天打开博客的时候,意外发现页面,打开均显示错误:Undefined array key 0 (set_error_handler)。 博客程序采用的是Z-BlogPHP。百度了一圈没有找到解决办法,在官方论坛里也没找到解决办法。 于是开始自己排查原因。我服务器采用…...

java-实例化一个List,然后添加数据的方法详解

在Java中,实例化一个 List 并向其中添加数据非常简单。List 是一个接口,因此我们通常使用它的常见实现类 ArrayList 或 LinkedList。以下是一些常见的操作方法: ### 1. 使用 ArrayList 实例化并添加数据 java import java.util.ArrayList; …...

【Linux系统】Ubuntu的简单操作

什么是 Ubuntu? Ubuntu(乌帮图)是一个非洲词汇,它的意思是“人性对待他人”或“群在故我在”。Ubuntu发行版将Ubuntu精神带到软件世界之中。 目前已有大量各种各样基于GNU/Linux的操作系统,例如:Debian,SuSE,Gentoo,R…...

标准日志插件项目【C/C++】

博客主页:花果山~程序猿-CSDN博客 文章分栏:项目日记_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,项目介…...

SpingBoot原理

SpingBoot原理 在前面十多天的课程当中,我们学习的都是web开发的技术使用,都是面向应用层面的,我们学会了怎 么样去用。而我们今天所要学习的是web后端开发的最后一个篇章springboot原理篇,主要偏向于底 层原理。 我们今天的课程…...

Cout输出应用举例

Cout输出应用 在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <sstream> #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和res…...

java的无锁编程和锁机制

Java 的并发编程中&#xff0c;为了保证线程安全和高性能&#xff0c;采用了两种主要的同步手段&#xff1a;锁机制和无锁编程。以下是对锁机制、无锁编程、死锁及其避免的详细讲解。 一、无锁编程 无锁编程通过原子操作来避免传统锁&#xff0c;从而减少线程的上下文切换&am…...

vue实现富文本编辑器上传(粘贴)图片 + 文字

vue实现富文本编辑器上传&#xff08;粘贴&#xff09;图片 文字 1.安装插件 npm install vue-quill-editor -s2.在使用vue-quill-editor富文本的时候&#xff0c;对于图片的处理经常是将图片转换成base64&#xff0c;再上传数据库&#xff0c;但是base64不好存储。 原理&a…...

子集和全排列(深度优先遍历)问题

欢迎访问杀马特主页&#xff1a;小小杀马特主页呀&#xff01; 目录 前言&#xff1a; 例题一全排列&#xff1a; 1.题目介绍&#xff1a; 2.思路汇总&#xff1a; 3.代码解答&#xff1a; 例题二子集&#xff1a; 题目叙述&#xff1a; 解法一&#xff1a; 1.思路汇总…...

判断检测框是否在感兴趣区域(ROI)内

判断检测框是否在感兴趣区域&#xff08;ROI&#xff09;内 在计算机视觉和图像处理中&#xff0c;我们经常需要确定一个矩形检测框是否位于一个特定的感兴趣区域&#xff08;Region of Interest, ROI&#xff09;内。这个ROI可以是一个多边形&#xff0c;而检测框则是一个矩形…...

正点原子阿尔法ARM开发板-IMX6ULL(九)——关于SecureCRT连接板子上的ubuntu

文章目录 一、拨码器二、SecureCRT 一、拨码器 emmm,也是好久没学IMX6ULL了&#xff0c;也是忘了拨码器决定了主板的启动方式 一种是直接从TF卡中读取文件&#xff08;注意这里是通过imdownload软件编译好了之后&#xff0c;通过指令放入TF卡&#xff09; 一种是现在这种用串口…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...