预测房价学习
1. 实现函数来方便下载数据
import hashlib
import os
import tarfile
import zipfile
import requestsDATA_HUB = dict()
DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'def download(name, cache_dir=os.path.join('..', 'data')):"""下载一个DATA_HUB中的文件,返回本地文件名"""assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"url, sha1_hash = DATA_HUB[name]os.makedirs(cache_dir, exist_ok=True)fname = os.path.join(cache_dir, url.split('/')[-1])if os.path.exists(fname):sha1 = hashlib.sha1()with open(fname, 'rb') as f:while True:data = f.read(1048576)if not data:breaksha1.update(data)if sha1.hexdigest() == sha1_hash:return fname  # 命中缓存print(f'正在从{url}下载{fname}...')r = requests.get(url, stream=True, verify=True)with open(fname, 'wb') as f:f.write(r.content)
return fname
2.使用pandas读入并处理数据
%matplotlib inline
import numpy as np
import pandas as pd
import torch
from torch import nn
from d2l import torch as d2lDATA_HUB['kaggle_house_train'] = (DATA_URL + 'kaggle_house_pred_train.csv','585e9cc93e70b39160e7921475f9bcd7d31219ce')DATA_HUB['kaggle_house_test'] = (DATA_URL + 'kaggle_house_pred_test.csv','fa19780a7b011d9b009e8bff8e99922a8ee2eb90')train_data = pd.read_csv(download('kaggle_house_train'))
test_data = pd.read_csv(download('kaggle_house_test'))print(train_data.shape)
print(test_data.shape)
3.查看前四个和最后两个特征以及相应标签(房价)
print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
4. 在每个样本中,第一个特征是ID,有助于模型识别每个训练样本。 虽然这很方便,但它不携带任何用于预测的信息。因此,在将数据提供给模型之前,将其从数据集中删除。
all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:]))
5.将所有缺失的值替换为相应特征的平均值,通过将特征重新缩放到零均值和单位方差来标准化数据
numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
all_features[numeric_features] = all_features[numeric_features].apply(lambda x: (x - x.mean()) / (x.std()))
all_features[numeric_features] = all_features[numeric_features].fillna(0)
6.处理离散值,诸如“MSZoning”之类特征,用独热编码替换
all_features = pd.get_dummies(all_features, dummy_na=True)
all_features.shape
7.用价格预测的对数来衡量差异
def log_rmse(net, features, labels):# 为了在取对数时进一步稳定该值,将小于1的值设置为1clipped_preds = torch.clamp(net(features), 1, float('inf'))rmse = torch.sqrt(loss(torch.log(clipped_preds),torch.log(labels)))return rmse.item()
8.训练函数借助Adam优化器(对初始学习率不那么敏感)
def train(net, train_features, train_labels, test_features, test_labels,num_epochs, learning_rate, weight_decay, batch_size):train_ls, test_ls = [], []train_iter = d2l.load_array((train_features, train_labels), batch_size)# 这里使用的是Adam优化算法optimizer = torch.optim.Adam(net.parameters(),lr = learning_rate,weight_decay = weight_decay)for epoch in range(num_epochs):for X, y in train_iter:optimizer.zero_grad()l = loss(net(X), y)l.backward()optimizer.step()train_ls.append(log_rmse(net, train_features, train_labels))if test_labels is not None:test_ls.append(log_rmse(net, test_features, test_labels))return train_ls, test_ls
9.K折交叉验证
def get_k_fold_data(k, i, X, y):assert k > 1fold_size = X.shape[0] // kX_train, y_train = None, Nonefor j in range(k):idx = slice(j * fold_size, (j + 1) * fold_size)X_part, y_part = X[idx, :], y[idx]if j == i:X_valid, y_valid = X_part, y_partelif X_train is None:X_train, y_train = X_part, y_partelse:X_train = torch.cat([X_train, X_part], 0)y_train = torch.cat([y_train, y_part], 0)return X_train, y_train, X_valid, y_valid
10. 在K折交叉验证中训练K次后,返回训练和验证误差的平均值
def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,batch_size):train_l_sum, valid_l_sum = 0, 0for i in range(k):data = get_k_fold_data(k, i, X_train, y_train)net = get_net()train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,weight_decay, batch_size)train_l_sum += train_ls[-1]valid_l_sum += valid_ls[-1]if i == 0:d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],legend=['train', 'valid'], yscale='log')print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, 'f'验证log rmse{float(valid_ls[-1]):f}')return train_l_sum / k, valid_l_sum / k
相关文章:
 
预测房价学习
1. 实现函数来方便下载数据 import hashlib import os import tarfile import zipfile import requestsDATA_HUB dict() DATA_URL http://d2l-data.s3-accelerate.amazonaws.com/def download(name, cache_diros.path.join(.., data)):"""下载一个DATA_HUB中…...
 
电脑无法上网,但是微信、QQ可以正常使用
这种情况一般是由于DNS服务器配置错误,或者已有的DNS服务器无法正常解析地址造成的。 按下winR打开运行,输入ncpa.cpl,点击确定。 在打开的网络连接窗口中找到对应的网卡,双击打开。一般有线网是“以太网”,无线网&am…...
 
C++11新特性(列表初始化与右值引用折叠与完美转发)
c11 列表初始化c98的{}c11的{}std::initializer_list 右值引用和移动语义左值和右值的概念左值引用和右值引用引用延长临时对象生命周期左值和右值的参数匹配左值引用的主要使用场景移动构造和移动赋值引用折叠完美转发 列表初始化 c98的{} 在C98中,大括号 {} 的使…...
 
基于SSH的物流运输货运车辆管理系统源码
基于经典的ssh(Spring Spring MVC Hibernate)框架与SaaS(软件即服务)模式,我们为运输企业与物流公司打造了一款开源且易用的车辆管理系统。 该系统主要包含以下核心模块: 档案管理 财务管理 借款管理 保…...
 
基于RabbitMQ,Redis,Redisson,RocketMQ四种技术实现订单延时关闭功能及其相关优缺点介绍(以12306为主题)
目录 1. 延迟关闭订单 1.1 订单延时关闭功能技术选型 1.1.1 定时任务 1.1.2 RabbitMQ 1.1.3 Redis 过期监听 1.1.4 Redisson 1.1.5 RocketMQ 1.2 RocketMQ订单延时关闭发送方实现 1.3 RocketMQ订单延时关闭的消费方实现 1. 延迟关闭订单 用户发起订单后,如…...
 
HarmonyOS ArkTS与C++数据类型转换
1. HarmonyOS ArkTS与C数据类型转换 本文介绍了C与TS各自数据类型与互相之间的数据类型转换,在需要使用C模块时可以快速上手对各种数据类型进行转换。 1.1. 概述 HarmonyOS的主力开发语言是ArkTS,也提供了C语言的支持,对于一些能力ÿ…...
 
腾讯云或阿里云centos7安装Redis,并解决端口无法访问的问题
问题背景 最近自建的网站JeecgFlow在云环境安装redis时候,出现端口无法远程进行访问。 浪费好了好久时间进行排查, 记录一下Redis在云环境centos7环境下如何安装,并且远程访问。 Redis安装 //安装c 用于编译redis yum install gcc-c//在/u…...
【小问题】距离估计和频率估计的方差下界推导出距离估计的方差下界
【1】OFDM Radar Algorithms in Mobile Communication Networks pp34 文章目录 1. 频率和距离之间的关系2. 计算 d ^ \hat{d} d^ 对 n ^ \hat{n} n^ 的导数3. 将频率的方差转化为距离的方差4. 从频率的 CRB 获得 var  [ n ^ ] \operatorname{var}[\hat{n}] var[n^]5. 将 …...
 
Selenium爬虫技术:如何模拟鼠标悬停抓取动态内容
介绍 在当今数据驱动的世界中,抓取动态网页内容变得越来越重要,尤其是像抖音这样的社交平台,动态加载的评论等内容需要通过特定的方式来获取。传统的静态爬虫方法难以处理这些由JavaScript生成的动态内容,Selenium爬虫技术则是一…...
 
Z-BlogPHP显示错误Undefined array key 0 (set_error_handler)的解决办法
今天打开博客的时候,意外发现页面,打开均显示错误:Undefined array key 0 (set_error_handler)。 博客程序采用的是Z-BlogPHP。百度了一圈没有找到解决办法,在官方论坛里也没找到解决办法。 于是开始自己排查原因。我服务器采用…...
java-实例化一个List,然后添加数据的方法详解
在Java中,实例化一个 List 并向其中添加数据非常简单。List 是一个接口,因此我们通常使用它的常见实现类 ArrayList 或 LinkedList。以下是一些常见的操作方法: ### 1. 使用 ArrayList 实例化并添加数据 java import java.util.ArrayList; …...
 
【Linux系统】Ubuntu的简单操作
什么是 Ubuntu? Ubuntu(乌帮图)是一个非洲词汇,它的意思是“人性对待他人”或“群在故我在”。Ubuntu发行版将Ubuntu精神带到软件世界之中。 目前已有大量各种各样基于GNU/Linux的操作系统,例如:Debian,SuSE,Gentoo,R…...
 
标准日志插件项目【C/C++】
博客主页:花果山~程序猿-CSDN博客 文章分栏:项目日记_花果山~程序猿的博客-CSDN博客 关注我一起学习,一起进步,一起探索编程的无限可能吧!让我们一起努力,一起成长! 目录 一,项目介…...
 
SpingBoot原理
SpingBoot原理 在前面十多天的课程当中,我们学习的都是web开发的技术使用,都是面向应用层面的,我们学会了怎 么样去用。而我们今天所要学习的是web后端开发的最后一个篇章springboot原理篇,主要偏向于底 层原理。 我们今天的课程…...
 
Cout输出应用举例
Cout输出应用 在main.cpp里输入程序如下: #include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <sstream> #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和res…...
java的无锁编程和锁机制
Java 的并发编程中,为了保证线程安全和高性能,采用了两种主要的同步手段:锁机制和无锁编程。以下是对锁机制、无锁编程、死锁及其避免的详细讲解。 一、无锁编程 无锁编程通过原子操作来避免传统锁,从而减少线程的上下文切换&am…...
vue实现富文本编辑器上传(粘贴)图片 + 文字
vue实现富文本编辑器上传(粘贴)图片 文字 1.安装插件 npm install vue-quill-editor -s2.在使用vue-quill-editor富文本的时候,对于图片的处理经常是将图片转换成base64,再上传数据库,但是base64不好存储。 原理&a…...
 
子集和全排列(深度优先遍历)问题
欢迎访问杀马特主页:小小杀马特主页呀! 目录 前言: 例题一全排列: 1.题目介绍: 2.思路汇总: 3.代码解答: 例题二子集: 题目叙述: 解法一: 1.思路汇总…...
判断检测框是否在感兴趣区域(ROI)内
判断检测框是否在感兴趣区域(ROI)内 在计算机视觉和图像处理中,我们经常需要确定一个矩形检测框是否位于一个特定的感兴趣区域(Region of Interest, ROI)内。这个ROI可以是一个多边形,而检测框则是一个矩形…...
 
正点原子阿尔法ARM开发板-IMX6ULL(九)——关于SecureCRT连接板子上的ubuntu
文章目录 一、拨码器二、SecureCRT 一、拨码器 emmm,也是好久没学IMX6ULL了,也是忘了拨码器决定了主板的启动方式 一种是直接从TF卡中读取文件(注意这里是通过imdownload软件编译好了之后,通过指令放入TF卡) 一种是现在这种用串口…...
 
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
 
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
 
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
 
【JVM】- 内存结构
引言 JVM:Java Virtual Machine 定义:Java虚拟机,Java二进制字节码的运行环境好处: 一次编写,到处运行自动内存管理,垃圾回收的功能数组下标越界检查(会抛异常,不会覆盖到其他代码…...
 
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
 
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
 
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
 
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
 
如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...
