Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs
大语言模型(LLM)在设备上部署道路上落下了一个令人生畏的障碍。本文关注于大语言模型的剪枝算法。
动态稀疏训练(Dynamic Sparse Training,DST)是一种近期收到广泛关注的剪枝算法。与之前大部分剪枝方法需要训练整个网络不同,DST选择性更新一部分网络参数并允许稀疏网络拓扑动态进化。然而先前研究显示其在小规模BERT级别语言模型上微调的失败。
本文方法
本文算法将剪枝视作为设计一个二进制掩码指示权重是否移除。在给定剪枝率 p p p 条件下的LLM剪枝问题可以描述为:
min M , W ∣ ∣ W ∗ A − ( M ⋅ W ) ∗ A ∣ ∣ 2 s . t . 1 − ∣ ∣ M ∣ ∣ 0 C o u t ⋅ C i n = p \min_{M,W}||W*A-(M\cdot W)*A||_{2}\quad s.t. \quad 1-\frac{||M||_{0}}{C_{out}\cdot C_{in}}=p M,Wmin∣∣W∗A−(M⋅W)∗A∣∣2s.t.1−Cout⋅Cin∣∣M∣∣0=p
该问题可以从两个互补角度求解,1. 设计标准来剪枝对模型影响最小的权重,2. 对于获得的稀疏网络,剩下的权重自然地进行微调以进一步减少重建误差。这些常规的求解方式需要大量训练资源,对于大容量的LLM模型并不适用。
本文关注如何高效减少给定剪枝稀疏网络与对应密集网络间重建损失。本文不使用全微调或部分更新的方法恢复性能,而是根据对重建损失贡献在见之后细化稀疏掩码。本文方法源于Rigging the lottery:
Making all tickets winners中动态稀疏训练使用的剪枝-生长操作。DST在稀疏网络训练中包含权重剪枝和权重生长过程。基于此方法,本文DSþT,一种稀疏LLM无训练微调方法,该方法剥离权重更新并通过将优化目标转化为每个全中行的重建误差保持剪枝和增长。剪枝-生长过程与网络独立进行,并使用迭代方式逐渐优化稀疏掩码
DSþT从一个稀疏的LLM网络开始,可以使用任何已有的评估标准剪枝。然后通过查看重建损失执行迭代剪枝与生长。
生长标准
给定稀疏权重行 M r ⊙ W r M_{r}\odot W_{r} Mr⊙Wr,尝试恢复剪枝权重使其在不同输入激活上获得最多的重建误差 Δ r \Delta_{r} Δr。这里的重建标准同时考虑重建误差变化的期望和方差。索引为i的恢复权重表示为:
i = { arg max k ¬ M r , k ⋅ W r , k ⋅ E [ A r ] / Var ( A r ) , if E [ Δ r ] > 0 , arg min k ¬ M r , k ⋅ W r , k ⋅ E [ A r ] / Var ( A r ) , otherwise, i=\left\{\begin{array}{l} \underset{k}{\arg \max } \neg \mathbf{M}_{r, k} \cdot \mathbf{W}_{r, k} \cdot \mathbb{E}\left[\mathbf{A}_{r}\right] / \operatorname{Var}\left(\mathbf{A}_{r}\right), \text { if } \mathbb{E}\left[\Delta_{r}\right]>0, \\ \underset{k}{\arg \min } \neg \mathbf{M}_{r, k} \cdot \mathbf{W}_{r, k} \cdot \mathbb{E}\left[\mathbf{A}_{r}\right] / \operatorname{Var}\left(\mathbf{A}_{r}\right), \text { otherwise, } \end{array}\right. i=⎩ ⎨ ⎧kargmax¬Mr,k⋅Wr,k⋅E[Ar]/Var(Ar), if E[Δr]>0,kargmin¬Mr,k⋅Wr,k⋅E[Ar]/Var(Ar), otherwise,
这里考虑引入输入激活的方差主要因为如果权重对 Δ r \Delta_{r} Δr 的影响在不同输入之间表现出很高的方差,那么恢复它可能不会导致稳定的误差减小。
剪枝标准
在选择恢复权重后,需要选择其余的权重进行剪枝以维护固定的稀疏率。对于剪枝标准,本文使用Wanda标准的变化版本。除了剪枝权重的标准指标,本文的标准强制要求所选权重在剪枝时应该为减少重建损失做出积极贡献。这有助于在不影响无训练微调重建损失稳定减少情况下保留关键权重。
i = { arg max k , M r , k ] ⋅ W r , k ⋅ E [ A r ] < 0 M r , k ⋅ ∣ W r , k ⋅ ∣ ∣ A r ∣ ∣ 2 , if E [ Δ r ] > 0 , arg max k , M r , k ] ⋅ W r , k ⋅ E [ A r ] > 0 M r , k ⋅ ∣ W r , k ⋅ ∣ ∣ A r ∣ ∣ 2 , if o t h e r w i s e , i=\left\{\begin{array}{l} \underset{k,M_{r,k}]\cdot W_{r,k}\cdot E[A_{r}]<0}{\arg \max } M_{r,k}\cdot |W_{r,k}\cdot ||A_{r}||_{2}, \text { if } \mathbb{E}\left[\Delta_{r}\right]>0, \\ \underset{k,M_{r,k}]\cdot W_{r,k}\cdot E[A_{r}]>0}{\arg \max } M_{r,k}\cdot |W_{r,k}\cdot ||A_{r}||_{2}, \text { if } otherwise, \\ \end{array}\right. i=⎩ ⎨ ⎧k,Mr,k]⋅Wr,k⋅E[Ar]<0argmaxMr,k⋅∣Wr,k⋅∣∣Ar∣∣2, if E[Δr]>0,k,Mr,k]⋅Wr,k⋅E[Ar]>0argmaxMr,k⋅∣Wr,k⋅∣∣Ar∣∣2, if otherwise,
相关文章:
Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs
大语言模型(LLM)在设备上部署道路上落下了一个令人生畏的障碍。本文关注于大语言模型的剪枝算法。 动态稀疏训练(Dynamic Sparse Training,DST)是一种近期收到广泛关注的剪枝算法。与之前大部分剪枝方法需要训练整个网…...
解决n+1查询数据库问题
文章目录 1. 问题描述2. 解决方法3. 总结 1. 问题描述 在写项目中,可能会碰到一个问题:通过查询表A得到一个list结果,再对list中的n个元素各查询一次关联的表B。形成对数据库执行n1次查询。这种代码会无形增加数据库的处理负担,影…...
DICOM 基础知识:深入理解DICOM数据结构与标签说明
目录 DICOM 图像概念 DICOM 图像关键特性: DICOM 文件结构 常见数据元素: 数据元素示例详解 DICOM-VR 数据类型说明 DICOM 标准支持的数据集 结语 DICOM 图像概念 DICOM(Digital Imaging and Communications in Medicine&…...
Git - 如何删除 push 过一次的文件链路追踪?
(以 target 文件夹为例)如果你已经在 .gitignore 中添加了 target/ 目录,但 target 文件夹仍然出现在 Git 的变更列表中,可能是因为它之前已经被添加到 Git 仓库中。即使你更新了 .gitignore,Git 仍然会跟踪这些文件。…...
软件测试学习总结
一.软件测试概念和目的 软件测试的概念: 测试模型(V模型) 软件测试就是在软件投入运行前,对软件需求分析、设计规格说明和编码实现的最终审查,它是软件质量保证的关键步骤。 通常对软件测试的定义有两种描述: 定义1:软件测试是为了发现错误而执行程序的过程 定义2:…...
c语言错题——#define对应的查找替换
文章目录 一、题目 提示:以下是本篇文章正文内容,下面案例可供参考 一、题目 分析 结构体向最长的char对齐,前两个位段元素一共42位,不足8位,合起来占1字节,最后一个单独1字节,一共3字节。另外…...
Visual Basic介绍及简单例子
Visual Basic(简称 VB)是一种由微软公司开发的包含协助开发环境的事件驱动编程语言。 一、主要特点 易于学习和使用: Visual Basic 具有直观的可视化开发环境,使用户可以通过拖放控件和设置属性的方式快速创建用户界面。对于初学者来说,这种方式非常容易上手,无需深入了…...
Matlab学习01-矩阵
目录 一,矩阵的创建 1,直接输入法创建矩阵 2,利用M文件创建矩阵 3,利用其它文本编辑器创建矩阵 二,矩阵的拼接 1,基本拼接 1) 水平方向的拼接 2)垂直方向的拼接 3…...
【复旦微FM33 MCU 外设开发指南】外设篇1——硬件除法器
前言 本系列基于复旦微FM33LC0系列单片机的DataSheet编写,旨在提供一些开发指南。 本文章及本系列其他文章将持续更新,本系列其它文章请跳转【复旦微FM33 MCU 外设开发指南】总集篇 本文章最后更新日期:2024/10/24 文章目录 前言用途工作流…...
在元神操作系统启动时自动执行任务脚本
1. 背景 本文主要介绍让元神操作系统启动时自动执行任务脚本的方法,适用于无人化任务执行目的。将任务脚本及相关的应用程序准备好之后,把装有元神操作系统的U盘插入目标电脑,然后打开电脑电源就会自动完成所设置的任务。 2. 方法 &#x…...
JAVA学习-练习试用Java实现“判断是否为等边三角形的方法”
问题: 定义一个三角形类(Triangle),包含三个边长(a, b, c)属性,并实现一个判断是否为等边三角形的方法。 解答思路: 下面是一个简单的 Triangle 类定义,其中包含了三个…...
Leetcode 140 Word Break II
题意:给定一个string以及一个wordDict,要求返回一个vector<string> ,这个vector中的string都是word Dict中的组合 Input: s “catsanddog”, wordDict [“cat”,“cats”,“and”,“sand”,“dog”] Output: [“cats and dog”,“cat sand dog”…...
文理学院数据库应用技术实验报告0
文理学院数据库应用技术实验报告0 实验内容 打开cmd,利用MySQL命令连接MySQL服务器。 mysql -u root -p查看当前MySQL服务实例使用的字符集(character)。 SHOW VARIABLES LIKE character_set_server;查看当前MySQL服务实例支持的字符序(collation)。 SHOW VARIABLES LIKE c…...
Bootstrap 4 按钮
Bootstrap 4 按钮 Bootstrap 4 是一个流行的前端框架,它提供了大量的组件和样式,用于快速开发响应式和移动设备优先的网页。在本文中,我们将重点讨论 Bootstrap 4 中的按钮组件,包括它们的基本用法、样式选项和自定义方法。 基本按钮 在 Bootstrap 4 中,创建一个基本按…...
【笔记】LLM位置编码之标准位置编码
标准位置编码 起源原理证明:对于任何固定的偏移量 k k k, P E p o s k PE_{posk} PEposk可以表示为 P E p o s PE_{pos} PEpos的线性函数。计算 P E p o s k 与 P E p o s PE_{posk} 与PE_{pos} PEposk与PEpos的内积结论 通俗理解缺点 起源 由…...
环 境 配 置
01 Ubuntu18.04中QT环境 1. 下载安装包 官网 http://download.qt.io/archive/qt/5.9/5.9.1/qt-opensource-linux-x64-5.9.1.run 国内镜像服务器 https://mirrors.tuna.tsinghua.edu.cn/qt/archive/qt/5.9/5.9.1/qt-opensource-linux-x64-5.9.1.run QQ群 ...... 2. 安装 把下载…...
理解dbt artifacts及其实际应用
dbt是数据分析领域的一种变革性工具,它使数据专业人员能够对仓库中的数据进行转换和建模。它的强大功能之一是生成dbt artifacts:dbt运行的结构化输出,提供对dbt项目及其操作的深入了解。 dbt 构件介绍 dbt构件是每次dbt运行时生成的JSON文…...
100种算法【Python版】第15篇——KMP算法
本文目录 1 算法原理1.1 部分匹配表2 实现步骤3 示例说明4 python实例5 算法应用领域1 算法原理 KMP(Knuth-Morris-Pratt)算法是一种用于高效字符串匹配的算法。它通过预处理模式字符串,构建一个部分匹配表(前缀函数),以避免重复比较,从而提高匹配效率。KMP 算法通过利…...
【软件工程】软件项目管理/工程项目管理复习资料
第一章 软件项目管理概述习题 一. 填空题 实现项目目标的制约因素有( 项目范围 )、( 成本 )、( 进度计划 )、( 客户满意度 )等。 项目管理( 启动过程组 )、…...
C语言基础题(大合集2)
1. 时间转换 给定秒数 --> 输出秒数 转化成 时/分/秒 //时间转换 //给定秒数 --> 转换成 小时/分/秒 int main() {//输入int seconds 0;int h 0;//小时int m 0;//分钟int s 0;//秒scanf("%d", &seconds);//计算h seconds / 60 / 60;m seconds / 60…...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
