【python】OpenCV—Connected Components
文章目录
- 1、任务描述
- 2、代码实现
- 3、完整代码
- 4、结果展示
- 5、涉及到的库函数
- 6、参考
1、任务描述
基于 python opencv 的连通分量标记和分析函数,分割车牌中的数字、号码、分隔符
- cv2.connectedComponents
- cv2.connectedComponentsWithStats
- cv2.connectedComponentsWithAlgorithm
- cv2.connectedComponentsWithStatsWithAlgorithm
2、代码实现
导入必要的包,加载输入图像,将其转换为灰度,并对其进行二值化处理
# 导入必要的包
import argparse
import cv2# 解析构建的参数解析器
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="1.jpeg", help="path to input image")
ap.add_argument("-c", "--connectivity", type=int, default=4, help="connectivity for connected analysis")
args = vars(ap.parse_args()) # 将参数转为字典格式# 加载输入图像,将其转换为灰度,并对其进行阈值处理
image = cv2.imread(args["image"]) # (366, 640, 3)
cv2.imshow("src", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("gray.jpg", gray)thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("threshold", thresh)
cv2.imwrite("threshold.jpg", thresh)
对阈值化后的图像应用连通分量分析
# 对阈值化后的图像应用连通分量分析
output = cv2.connectedComponentsWithStats(thresh, args["connectivity"], cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
cv2.connectedComponentsWithStats
可以结合后面章节的介绍查看
输入图片的尺寸假如是 (366, 640, 3)
,看看 cv2.connectedComponentsWithStats
的返回情况
"""
[labels] (366, 640)array([[1, 1, 1, ..., 1, 1, 1],[1, 1, 1, ..., 1, 1, 1],[1, 1, 1, ..., 1, 1, 1],...,[1, 1, 1, ..., 1, 1, 1],[1, 1, 1, ..., 1, 1, 1],[1, 1, 1, ..., 1, 1, 1]], dtype=int32)[state]
array([[ 83, 83, 482, 163, 57925],[ 0, 0, 640, 366, 155776],[ 96, 96, 456, 138, 2817],[ 113, 108, 75, 113, 5915],[ 194, 119, 52, 90, 2746],[ 270, 120, 62, 90, 2260],[ 489, 124, 46, 85, 2370],[ 344, 126, 29, 82, 1398],[ 394, 126, 29, 82, 1397],[ 445, 126, 29, 82, 1396],[ 253, 149, 17, 18, 240]], dtype=int32)[centroids]
array([[333.22577471, 163.75948209],[317.48520953, 191.81337305],[323.41924033, 174.62051828],[148.71885038, 163.47658495],[219.46686089, 164.00837582],[299.82566372, 161.7420354 ],[512.84767932, 165.38818565],[362.91773963, 161.85479256],[412.91481747, 161.956335 ],[463.91833811, 161.96919771],[261.3125 , 157.22083333]])
"""
注意这里是质心,不是连通区域矩形框的中心
对于 x 方向的质心,图像在质心左右两边像素和相等,y 同理,上下两边像素和相等
遍历每个连通分量,忽略 label = 0
背景,提取当前标签的连通分量统计信息和质心,可视化边界框和当前连通分量的质心
# 遍历每个连通分量
for i in range(0, numLabels):# 0表示的是背景连通分量,忽略if i == 0:text = "examining component {}/{} (background)".format(i + 1, numLabels)# otherwise, we are examining an actual connected componentelse:text = "examining component {}/{}".format(i + 1, numLabels)# 打印当前的状态信息print("[INFO] {}".format(text))# 提取当前标签的连通分量统计信息和质心x = stats[i, cv2.CC_STAT_LEFT] # 左上角横坐标y = stats[i, cv2.CC_STAT_TOP] # 左上角纵坐标w = stats[i, cv2.CC_STAT_WIDTH] # 边界框的宽h = stats[i, cv2.CC_STAT_HEIGHT] # 边界框的高area = stats[i, cv2.CC_STAT_AREA] # 边界框的面积(cX, cY) = centroids[i] # 边界框的质心# 可视化边界框和当前连通分量的质心# clone原始图,在图上画当前连通分量的边界框以及质心output = image.copy()cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 3) # 绿色边界框cv2.circle(output, (int(cX), int(cY)), 4, (0, 0, 255), -1) # 红色质心# 创建掩码componentMask = (labels == i).astype("uint8") * 255 # 绘制 mask,对应label 置为 255,其余为 0# 显示输出图像和掩码cv2.imshow("Output", output)cv2.imwrite(f"output-{str(i).zfill(3)}.jpg", output)cv2.imshow("Connected Component", componentMask)cv2.imwrite(f"componentMask-{str(i).zfill(3)}.jpg", componentMask)cv2.waitKey(0)
创建掩码的时候比较巧妙 componentMask = (labels == i).astype("uint8") * 255
3、完整代码
# 导入必要的包
import argparse
import cv2# 解析构建的参数解析器
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="1.jpeg", help="path to input image")
ap.add_argument("-c", "--connectivity", type=int, default=4, help="connectivity for connected analysis")
args = vars(ap.parse_args()) # 将参数转为字典格式# 加载输入图像,将其转换为灰度,并对其进行阈值处理
image = cv2.imread(args["image"]) # (366, 640, 3)
cv2.imshow("src", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
cv2.imwrite("gray.jpg", gray)thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("threshold", thresh)
cv2.imwrite("threshold.jpg", thresh)# 对阈值化后的图像应用连通分量分析
output = cv2.connectedComponentsWithStats(thresh, args["connectivity"], cv2.CV_32S)
(numLabels, labels, stats, centroids) = output# 遍历每个连通分量
for i in range(0, numLabels):# 0表示的是背景连通分量,忽略if i == 0:text = "examining component {}/{} (background)".format(i + 1, numLabels)# otherwise, we are examining an actual connected componentelse:text = "examining component {}/{}".format(i + 1, numLabels)# 打印当前的状态信息print("[INFO] {}".format(text))# 提取当前标签的连通分量统计信息和质心x = stats[i, cv2.CC_STAT_LEFT] # 左上角横坐标y = stats[i, cv2.CC_STAT_TOP] # 左上角纵坐标w = stats[i, cv2.CC_STAT_WIDTH] # 边界框的宽h = stats[i, cv2.CC_STAT_HEIGHT] # 边界框的高area = stats[i, cv2.CC_STAT_AREA] # 边界框的面积(cX, cY) = centroids[i] # 边界框的质心# 可视化边界框和当前连通分量的质心# clone原始图,在图上画当前连通分量的边界框以及质心output = image.copy()cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 3) # 绿色边界框cv2.circle(output, (int(cX), int(cY)), 4, (0, 0, 255), -1) # 红色质心# 创建掩码componentMask = (labels == i).astype("uint8") * 255 # 绘制 mask,对应label 置为 255,其余为 0# 显示输出图像和掩码cv2.imshow("Output", output)cv2.imwrite(f"output-{str(i).zfill(3)}.jpg", output)cv2.imshow("Connected Component", componentMask)cv2.imwrite(f"componentMask-{str(i).zfill(3)}.jpg", componentMask)cv2.waitKey(0)
4、结果展示
输入图片
output
[INFO] examining component 1/11 (background)
[INFO] examining component 2/11
[INFO] examining component 3/11
[INFO] examining component 4/11
[INFO] examining component 5/11
[INFO] examining component 6/11
[INFO] examining component 7/11
[INFO] examining component 8/11
[INFO] examining component 9/11
[INFO] examining component 10/11
[INFO] examining component 11/11
灰度图
二值化后的结果
遍历每个连通分量
componentMask0
output0,车牌外矩形轮廓
componentMask1
output1,图像边界的大框
componentMask2
output2,车牌内矩形轮廓
componentMask3
output3,汉字豫
componentMask4
output4,字母 U
componentMask5
output5,字母 V
componentMask6
output6,数字 9
componentMask7
output7,数字 1
componentMask8
output8,数字 1
componentMask9
output9,数字 1
componentMask10
output10,分隔符
总结,配合车牌检测,和 OCR 就能形成一个简略的车牌识别系统 😊
5、涉及到的库函数
cv2.connectedComponentsWithStats
是 OpenCV 库中的一个函数,用于寻找图像中的连通区域,并计算每个连通区域的统计信息。这个函数在处理二值图像时非常有用,可以帮助我们了解图像中不同对象的数量和特征。
一、函数原型
retval, labels, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8, ltype=CV_32S)
二、参数说明
- image: 输入图像,应为二值图像(黑白图像),即图像中的每个像素点非黑即白。
- connectivity: 像素的连通性。4 或 8,表示每个像素点与其上下左右(4连通)或上下左右加对角线方向(8连通)的像素点是否视为连通。默认值为 8。
- ltype: 输出标签图像的类型,通常为 cv2.CV_32S。
三、返回值
- retval: 连通区域的数量(包括背景,如果背景被视为一个连通区域的话)。
- labels: 与输入图像同样大小的标签图像,其中每个连通区域被赋予一个唯一的标签值。
- stats: 一个矩阵,包含了每个连通区域的统计信息。对于每个连通区域,矩阵中存储了以下信息:(x, y, width, height, area),其中 (x, y) 是连通区域的边界框的左上角坐标,width 和 height 是边界框的宽度和高度,area 是连通区域的面积。
- centroids: 连通区域的质心坐标矩阵,每个连通区域有一个对应的 (cx, cy) 坐标。
四、示例
下面是一个简单的使用 cv2.connectedComponentsWithStats
的示例:
import cv2
import numpy as np # 读取图像并转换为灰度图像
image = cv2.imread('example.png', 0) # 二值化处理(例如,阈值分割)
_, binary = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY) # 查找连通区域及统计信息
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary) # 打印连通区域的数量
print('Number of connected components:', num_labels) # 遍历每个连通区域,并打印其统计信息
for i in range(1, num_labels): # 注意:背景区域的标签为0,从1开始遍历 x, y, w, h, area = stats[i, 0:5] print(f'Component {i}: (x, y) = ({x}, {y}), Width = {w}, Height = {h}, Area = {area}')
五、注意事项
- 在处理二值图像时,确保图像已经正确地进行了二值化处理。
- 连通区域的数量(返回值 retval)包括了背景区域,如果背景被视为一个连通区域的话。
- 输出的标签图像 labels 中的每个像素值代表了对应像素点所属的连通区域的标签。
通过 cv2.connectedComponentsWithStats,我们可以方便地获取图像中连通区域的数量和统计信息,这对于图像分析和处理中的许多任务都是非常有用的。
6、参考
- OpenCV 连通分量标记和分析
- https://pyimagesearch.com/2021/02/22/opencv-connected-component-labeling-and-analysis/
- https://docs.opencv.org/4.x/de/d01/samples_2cpp_2connected_components_8cpp-example.html
相关文章:

【python】OpenCV—Connected Components
文章目录 1、任务描述2、代码实现3、完整代码4、结果展示5、涉及到的库函数6、参考 1、任务描述 基于 python opencv 的连通分量标记和分析函数,分割车牌中的数字、号码、分隔符 cv2.connectedComponentscv2.connectedComponentsWithStatscv2.connectedComponents…...

【优选算法篇】前缀之序,后缀之章:于数列深处邂逅算法的光与影
文章目录 C 前缀和详解:基础题解与思维分析前言第一章:前缀和基础应用1.1 一维前缀和模板题解法(前缀和)图解分析C代码实现易错点提示代码解读题目解析总结 1.2 二维前缀和模板题解法(二维前缀和)图解分析C…...
win10 更新npm 和 node
win10 更新npm 和 node win10 更新 npm winR 输入cmd,打开命令行,并输入如下 # 查看当前npm版本 npm -v # 清缓存 npm cache clean --force # 强制更新npm,试过npm update -g,没起作用,版本没变化 npm install -g …...

搜索引擎算法更新对网站优化的影响与应对策略
内容概要 随着互联网的不断发展,搜索引擎算法也在不断地进行更新和优化。了解这些算法更新的背景与意义,对于网站管理者和优化人员而言,具有重要的指导意义。不仅因为算法更新可能影响到网站的排名,还因为这些变化也可能为网站带…...

使用 Q3D 计算芯片引线的 AC 和 DC R 和 L
摘要: 模具经常用于电子行业。了解其导联的寄生特性对于设计人员来说很重要。Q3D 是计算 RLCG 的完美工具。它可用于高速板或低频电力电子设备。 在下面的视频中,我们展示了如何修改几何结构、设置模型和检查结果。 详细信息: 几何图形可以在 Q3D 中创建,也可以作为不同…...
前端_008_Vite
文章目录 Vite项目结构依赖构建插件 官网:https://vitejs.cn/vite3-cn/guide/ 一句话简介:前端的一个构建工具 Vite项目结构 index.html package.json vite.config.js public目录 src目录 #新建一个vite项目 npm create vitelatest原有项目引入vite需要…...

ssm007亚盛汽车配件销售业绩管理统(论文+源码)_kaic
本科毕业设计论文 题目:亚盛汽车配件销售业绩管理系统设计与实现 系 别: XX系(全称) 专 业: 软件工程 班 级: 软件工程15201 学生姓名: 学生学号: 指导教师&am…...
如何使用python完成时间序列的数据分析?
引言 时间序列分析是统计学和数据分析中的一个重要领域,广泛应用于经济学、金融、气象学、工程等多个领域。 时间序列数据是按时间顺序排列的一系列数据点,通常用于分析数据随时间的变化趋势。 本文将介绍时间序列分析的基本概念、常用方法以及如何使用Python进行时间序列…...
数字ic设计,Windows/Linux系统,其他相关领域,软件安装包(matlab、vivado、modelsim。。。)
目录 一、总述 二、软件列表 1、modelsim_10.6c 2、notepad 3、matlab 4、Visio-Pro-2016 5、Vivado2018 6、VMware15 7、EndNote X9.3.1 8、Quartus 9、pycharm 10、CentOS7-64bit 一、总述 过往发了很多数字ic设计领域相关的内容,反响也很好。 最近…...

SD-WAN分布式组网:构建高效、灵活的企业网络架构
随着企业数字化转型的深入,分布式组网逐渐成为企业网络架构中的核心需求。无论是跨区域的分支机构互联,还是企业与云服务的连接,如何在不同区域实现高效、低延迟的网络传输,已成为业务成功的关键。SD-WAN(软件定义广域…...

Task :prepareKotlinBuildScriptModel UP-TO-DATE,编译卡在这里不动或报错
这里写自定义目录标题 原因方案其他思路 原因 一般来说,当编译到这个task之后,后续是要进行一些资源的下载的,如果你卡在这边不动的话,很有可能就是你的IDE目前没有办法进行下载。 方案 开关一下IDE内部的代理,或者…...

unseping攻防世界
源码分析 <?php highlight_file(__FILE__);//代码高亮 class ease{//声明了两个私有属性:保存要调用的方法的名称和保存该方法的参数。$method,$argsprivate $method;private $args;//构造函数在实例化类的对象时初始化,即为对象成员变量赋初始值。…...
大厂面试真题-简单描述一下SpringBoot的启动过程
SpringBoot的启动流程是一个复杂但有序的过程,它涉及多个步骤和组件的协同工作。以下是SpringBoot启动流程的详细解析: 一、启动main方法 当SpringBoot项目启动时,它会在当前工作目录下寻找有SpringBootApplication注解标识的类,…...
4. 硬件实现
博客补充: CUDA C 编程指南学习_c cuda编程-CSDN博客https://blog.csdn.net/qq_62704693/article/details/141225395?spm1001.2014.3001.5501NVIDIA GPU 架构是围绕可扩展的多线程流式多处理器 (SM) 阵列构建的。当主机 CPU 上的 CUDA 程序…...

《操作系统真象还原》第3章 完善MBR【3.1 — 3.2】
目录 引用与说明 3.1、地址、section、vstart 浅尝辄止 1、什么是地址 2、什么是 section【汇编】 3、什么是 vstart【汇编】 3.2、CPU 的实模式 1、CPU 工作原理【重要】 2、实模式下的寄存器 4、实模式下 CPU 内存寻址方式 5、栈到底是什么玩意儿 6 ~ 8 无条件转移…...
八大排序-冒泡排序
在里面找动图理解 【数据结构】八大排序(超详解附动图源码)_数据结构排序-CSDN博客 一 简介 冒泡排序应该是我们最熟悉的排序了,在C语言阶段我们就学习了冒泡排序。 他的思想也非常简单: 两两元素相比,前一个比后一个大就交换࿰…...

基于Spring Boot+Vue的助农销售平台(协同过滤算法、节流算法、支付宝沙盒支付、图形化分析)
🎈系统亮点:协同过滤算法、节流算法、支付宝沙盒支付、图形化分析; 一.系统开发工具与环境搭建 1.系统设计开发工具 后端使用Java编程语言的Spring boot框架 项目架构:B/S架构 运行环境:win10/win11、jdk17 前端&…...
uniapp写抖音小程序阻止右滑返回上一个页面
最近用uniapp写小程序遇到一个问题因为内部用到右滑的业务,但是只要右滑就会回到上一页面,用了event.preventDeafult()没有用,看了文档找到了解决办法 1.在最外层view加上touchstart事件 <view class"container" touchstart&q…...

华为配置手工负载分担模式链路聚合实验
目录 组网需求 配置思路 操作步骤 配置文件 组网图形 图1 配置手工负载分担模式链路聚合组网图 组网需求配置思路操作步骤配置文件 组网需求 如图1所示,AC1和AC2通过以太链路分别都连接VLAN10和VLAN20,且AC1和AC2之间有较大的数据流量。 用户希望A…...

【Spring】Cookie与Session
💐个人主页:初晴~ 📚相关专栏:计算机网络那些事 一、Cookie是什么? Cookie的存在主要是为了解决HTTP协议的无状态性问题,即协议本身无法记住用户之前的操作。 "⽆状态" 的含义指的是: 默认情况…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...

【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...