使用 Pandas 进行时间序列分析的 10个关键点
使用Pandas进行时间序列分析的10个关键点(由于篇幅限制,这里调整为10个,但实际操作中可能涉及更多细节)如下:
1. 创建时间序列数据
时间序列数据是指在多个时间点上形成的数值序列。在Pandas中,可以使用to_datetime函数将日期字符串转换为时间戳,并创建以时间戳为索引的DataFrame或Series对象。
import pandas as pd# 创建一个简单的DataFrame
data = {'Date': ['2022-01-01', '2022-01-02', '2022-01-03'],'Price': [100, 105, 110]}
df = pd.DataFrame(data)
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
print(df)
2. 设置日期为索引
为了方便处理时间序列数据,通常会把日期设置为DataFrame的索引。
# 将'Date'列转换为datetime类型,并设置为索引
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
3. 数据清洗
时间序列数据往往伴随着缺失值、异常值以及非标准的时间格式等问题。利用Pandas的工具,可以高效地完成数据清洗任务。
- 识别并填充缺失值:使用
isnull()函数标识缺失值,并使用fillna()或interpolate()方法填充缺失值。 - 处理异常值:利用统计学方法(如IQR四分位数范围)识别并处理异常值。
4. 数据重采样
数据重采样是指将时间序列数据重新调整到不同的时间频率,例如将日数据转换为月数据或年数据。
# 按月重采样并计算平均值
monthly_df = df.resample('M').mean()
print(monthly_df)
5. 插值处理
当时间序列数据中有缺失值时,可以使用插值方法填补这些缺失值。Pandas提供了多种插值方法,如线性插值、时间插值等。
# 使用线性插值填补缺失值
df['Price'] = df['Price'].interpolate()
6. 滚动窗口分析
滚动窗口分析是时间序列分析中常用的技术,它允许在固定大小的窗口内计算统计指标,如移动平均、移动标准差等。
# 计算5日移动平均
df['MA_5'] = df['Price'].rolling(window=5).mean()
7. 季节性分解
季节性分解可以帮助识别数据中的趋势、季节性和随机成分。Pandas可以与statsmodels库结合使用进行季节性分解。
from statsmodels.tsa.seasonal import seasonal_decompose# 进行季节性分解
result = seasonal_decompose(df['Price'], model='additive')
print(result.trend)
print(result.seasonal)
print(result.resid)
8. 滞后与差分
滞后是指将时间序列数据向后移动一定的步长,这在构建时间序列模型时非常有用。差分则是计算时间序列数据在不同时间点上的变化量。
# 计算滞后1的列
df['Lag_1'] = df['Price'].shift(1)# 计算一阶差分
df['Diff_1'] = df['Price'].diff()
9. 时间频率转换
使用Pandas的resample()方法可以改变时间序列的频率,例如将其转换为每日数据、每周数据等。此外,还可以使用asfreq()方法处理不连续的时间戳。
# 将数据转换为每日频率并填充缺失值
daily_data = df.resample('D').ffill()
10. 可视化分析
最后,利用Pandas与matplotlib等库结合,可以对时间序列数据进行可视化分析,更直观地展示数据中的趋势、周期性和异常值等信息。
import matplotlib.pyplot as plt# 绘制原始时间序列数据
df.plot()
plt.show()
以上是使用Pandas进行时间序列分析的10个关键点及相应的代码示例。这些技术和方法可以帮助发现数据中的模式、趋势和周期性变化,为时间序列分析提供有力支持。
相关文章:
使用 Pandas 进行时间序列分析的 10个关键点
使用Pandas进行时间序列分析的10个关键点(由于篇幅限制,这里调整为10个,但实际操作中可能涉及更多细节)如下: 1. 创建时间序列数据 时间序列数据是指在多个时间点上形成的数值序列。在Pandas中,可以使用t…...
使用 Mermaid 语言描述 AGI 系统架构图
使用Mermaid语言描述AGI系统架构图 一、整体架构概述 以下是一个简化的AGI(Artificial General Intelligence,通用人工智能)系统架构的Mermaid描述。该系统主要包括数据收集与预处理、模型训练、推理与决策以及交互接口等模块,各…...
绘制线性可分支持向量机决策边界图 代码解析
### 绘制线性可分支持向量机决策边界图 def plot_classifer(model, X, y):# 超参数边界x_min -7x_max 12y_min -12y_max -1step 0.05# meshgridxx, yy np.meshgrid(np.arange(x_min, x_max, step),np.arange(y_min, y_max, step))# 模型预测z model.predict(np.c_[xx.ra…...
No.23 笔记 | WEB安全 - 任意文件漏洞 part 5
本文全面且深入地探讨了文件上传漏洞相关知识。从基础概念出发,清晰地阐述了文件上传漏洞的定义及其产生的本质原因,同时列出了该漏洞成立的必要条件。详细说明了文件上传漏洞可能对服务器控制权、网站安全以及业务运营带来的严重危害。 文中还深入解析了…...
EasyPlayer.js网页播放器,支持FLV、HLS、WebSocket、WebRTC、H.264/H.265、MP4、ts各种音视频流播放
EasyPlayer.js功能: 1、支持解码H.264视频(Baseline, Main, High Profile全支持,支持解码B帧视频) 2、支持解码H.265视频(flv id 12) 3、支持解码AAC音频(LC,HE,HEv2 Profile全支持) 4、支持解码MP3音频以及Speex音频格式 5、可…...
WPF数据绑定的五大模式
WPF(Windows Presentation Foundation)是微软推出的一种用于构建Windows用户界面的UI框架。它支持数据绑定,允许开发者将UI元素与数据源绑定,从而实现数据和界面的自动同步。WPF数据绑定有几种不同的模式, 以下是五种…...
从零到一:大学新生编程入门攻略与成长指南
文章目录 每日一句正能量前言编程语言选择:为大学新生量身定制Python:简单而强大的选择JavaScript:Web开发的基石Java:面向对象的经典C#:微软的全能选手 学习资源推荐:编程学习的宝藏在线课程教程和文档书籍…...
详细分析Pytorch中的transpose基本知识(附Demo)| 对比 permute
目录 前言1. 基本知识2. Demo 前言 原先的permute推荐阅读:详细分析Pytorch中的permute基本知识(附Demo) 1. 基本知识 transpose 是 PyTorch 中用于交换张量维度的函数,特别是用于二维张量(矩阵)的转置操…...
初识WebGL
思路: 构建<canvas>画布节点,获取其的实例。使用getWebGLContext() 拿到画布上下文。拿到上下文用clearColor() 设置背景颜色。最后清空canvas画布,是为了清除颜色缓冲区。 html结构: <!DOCTYPE html> <html lang"en&…...
【力扣】Go语言回溯算法详细实现与方法论提炼
文章目录 一、引言二、回溯算法的核心概念三、组合问题1. LeetCode 77. 组合2. LeetCode 216. 组合总和III3. LeetCode 17. 电话号码的字母组合4. LeetCode 39. 组合总和5. LeetCode 40. 组合总和 II小结 四、分割问题6. LeetCode 131. 分割回文串7. LeetCode 93. 复原IP地址小…...
「C/C++」C/C++ 之 第三方库使用规范
✨博客主页何曾参静谧的博客📌文章专栏「C/C」C/C程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…...
六、元素应用CSS的习题
题目一: 使用CSS样式对页面元素加以修饰,制作“ 旅游攻略 ”网站。如下图所示 运行效果: 代码: <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>旅游攻略</title><…...
正式入驻!上海斯歌BPM PaaS管理软件等产品入选华为云联营商品
近日,上海斯歌旗下BPM PaaS管理软件(NBS)等多款产品入选华为云云商店联营商品,上海斯歌正式成为华为云联营商品合作伙伴。用户登录华为云云商店即可采购上海斯歌的BPM PaaS产品及配套服务。通过联营模式,双方合作能够深…...
使用 Axios 上传大文件分片上传
背景 在上传大文件时,分片上传是一种常见且有效的策略。由于大文件在上传过程中可能会遇到内存溢出、网络不稳定等问题,分片上传可以显著提高上传的可靠性和效率。通过将大文件分割成多个小分片,不仅可以减少单次上传的数据量,降…...
Nginx+Lua脚本+Redis 实现自动封禁访问频率过高IP
1 、安装OpenResty 安装使用 OpenResty,这是一个集成了各种 Lua 模块的 Nginx 服务器,是一个以Nginx为核心同时包含很多第三方模块的Web应用服务器,使用Nginx的同时又能使用lua等模块实现复杂的控制。 (1)安装编译工具…...
PART 1 数据挖掘概论 — 数据挖掘方法论
目录 数据库知识发掘步骤 数据挖掘技术的产业标准 CRISP-DM SEMMA 数据库知识发掘步骤 数据库知识发掘(Knowledge Discovery in Database,KDD)是从数据库中的大量数据中发现不明显、之前未知、可能有用的知识。 知识发掘流程(Knowledge Discovery Process)包括属性选择…...
Centos安装ffmpeg的方法
推荐第一个,不要自己编译安装,太难了,坑多。 在 CentOS 上安装 FFmpeg 有几种方法,以下是两种常见的方法: ### 方法一:使用 RPM Fusion 仓库安装 1. **启用 RPM Fusion 仓库**: RPM Fusion 是一个第三方仓库,提供了许多 CentOS 官方仓库中没有的软件包。 ```bash…...
理解SQL中通配符的使用
前言 SQL 是一种标准化的结构化查询语言,涉及结构化查询时,高效地检索数据至关重要。而通配符是SQL中模式匹配的有效的方法。使用通配符可以更轻松地检索到所需的确切数据。通配符允许我们定义多功能查询条件。本文将 介绍SQL通配符的基础知识及用法。 …...
SpringBoot篇(简化操作的原理)
目录 一、代码位置 二、统一版本管理(parent) 三、提供 starter简化 Maven 配置 四、自动配置 Spring(引导类) 五、嵌入式 servlet 容器 一、代码位置 二、统一版本管理(parent) SpringBoot项目都会继…...
Cesium的模型(ModelVS)顶点着色器浅析
来自glTF和3D Tiles的模型会走ModelVS.glsl。这个文件不单独是把模型顶点转换为屏幕坐标,还包含了丰富的处理过程。 Cesium是根据定义的Define判断某个行为是否需要被执行,比如#define HAS_SILHOUETTE,说明需要计算模型外轮廓线。 Cesium的…...
深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
