【数据仓库】
数据仓库:概念、架构与应用
目录
- 什么是数据仓库
- 数据仓库的特点
- 数据仓库的架构
- 3.1 数据源层
- 3.2 数据集成层(ETL)
- 3.3 数据存储层
- 3.4 数据展示与应用层
- 数据仓库的建模方法
- 4.1 星型模型
- 4.2 雪花模型
- 4.3 星座模型
- 数据仓库与数据库的区别
- 数据仓库的应用场景
- 数据仓库的优缺点分析
- 数据仓库的未来趋势
- 总结
1. 什么是数据仓库
数据仓库(Data Warehouse, DW)是一种用于分析和报告的数据库系统,专门为大规模数据分析、历史数据管理和商业智能(BI)需求设计。数据仓库集成了来自多个来源的数据,通过清洗、转换和加载(ETL)过程,使其符合一致的结构和标准。数据仓库支持企业在大数据量下做出更明智的决策,是商业智能和数据分析的核心基础设施。
数据仓库的主要目标是提供决策支持服务,通过结构化的数据管理,为企业提供可靠、全面的业务视图。
2. 数据仓库的特点
数据仓库的核心特点可以概括为以下几点:
- 面向主题:数据仓库是以主题为中心设计的,每个主题集中描述一个领域的数据(如客户、销售等)。
- 集成性:数据仓库集成了来自不同源的数据,并对数据进行统一和规范化处理。
- 不可变性:数据仓库的数据通常是不可修改的,任何更新数据通常通过增量加载或追加。
- 时变性:数据仓库通常包含时间戳信息,以记录数据的历史变化,支持时序分析和历史数据对比。
3. 数据仓库的架构
数据仓库的架构通常分为四个层次:数据源层、数据集成层(ETL)、数据存储层和数据展示与应用层。每个层次在数据仓库的搭建中扮演着独特的角色。
3.1 数据源层
数据源层是数据仓库的数据来源,可能包括多个结构化或非结构化数据源,如关系型数据库、ERP 系统、CSV 文件、API 接口等。数据源层的数据来源多样,通常为生产系统提供的原始数据。
3.2 数据集成层(ETL)
ETL(Extract, Transform, Load)是数据仓库中的重要组成部分,用于数据的提取、清洗、转换和加载。ETL 将不同格式的数据源数据转化为统一的格式,并进行数据清理和质量检查,确保数据的一致性和准确性。常用的 ETL 工具包括 Informatica、Talend、Apache Nifi 等。
3.3 数据存储层
数据存储层是数据仓库的核心区域,通常包含企业的数据仓库数据库。这一层的数据经过优化,便于快速的查询和分析。数据存储层的数据结构可以是星型模型、雪花模型或星座模型,具体取决于数据仓库的设计需求。
3.4 数据展示与应用层
数据展示与应用层负责将数据仓库中的数据以图表、报表、仪表盘等形式展示给用户,常用的 BI 工具包括 Tableau、Power BI、Looker 等。这一层还包含面向高级分析的功能,允许使用机器学习和预测分析等方法深入挖掘数据价值。
4. 数据仓库的建模方法
数据仓库建模是设计数据仓库结构的关键步骤,不同的建模方法适用于不同的数据结构和分析需求。
4.1 星型模型
星型模型是一种数据仓库常用的建模方法,其核心是一个中心事实表,周围围绕着多个维度表。星型模型设计简单,查询性能好,适合于查询频繁、需要快速响应的业务场景。
4.2 雪花模型
雪花模型在星型模型的基础上进行了进一步的规范化,将维度表进一步分解为多个子维度表。雪花模型可以减少数据冗余,但其查询复杂度较高,适用于数据更新频繁、维度信息复杂的场景。
4.3 星座模型
星座模型是星型模型的扩展,它支持多个事实表,适用于存在多个分析主题的数据仓库。星座模型灵活性高,但设计和管理复杂度较大,适合大规模数据和复杂分析需求的场景。
5. 数据仓库与数据库的区别
特性 | 数据仓库 | 数据库 |
---|---|---|
目标 | 支持数据分析和决策支持 | 支持事务处理 |
数据来源 | 多数据源,跨部门、跨业务系统的集成 | 单一业务系统数据 |
数据结构 | 面向主题的多维数据结构 | 面向记录的二维表结构 |
数据更新 | 主要为批量加载,数据较少更新 | 实时更新、插入和删除 |
查询类型 | 大规模分析查询 | 短小频繁的事务查询 |
数据量 | 支持海量历史数据 | 一般存储当前业务状态的数据 |
6. 数据仓库的应用场景
数据仓库已成为各行业数据分析的基础,主要应用场景包括:
- 业务分析与报表:数据仓库可以支持跨部门的业务报表生成,如财务报表、销售分析、生产监控等,帮助企业高效掌握业务动态。
- 用户行为分析:通过用户行为数据的分析,企业可以了解用户偏好和习惯,进行更精准的市场营销。
- 绩效管理:通过历史数据的对比,数据仓库可以帮助企业制定合理的 KPI 指标,并对团队或个人绩效进行分析。
- 风险控制与合规管理:在金融和保险等行业,数据仓库常用于风险评估和合规性监控,帮助企业更好地应对市场风险和法规要求。
7. 数据仓库的优缺点分析
优点
- 支持大规模数据分析:数据仓库专为数据分析设计,支持高效的大规模数据分析需求。
- 提高数据一致性:数据仓库通过数据集成和清洗,提高了数据的准确性和一致性。
- 便于历史数据存储和查询:数据仓库保留历史数据,方便用户进行趋势分析和历史回溯。
- 支持多维分析:数据仓库的设计使其支持基于维度的多维数据分析,能够灵活地满足不同的分析需求。
缺点
- 建设成本高:数据仓库的设计和实施成本较高,尤其是对 ETL 和数据质量管理的要求较高。
- 实施周期长:数据仓库项目的建设周期通常较长,需要投入大量时间进行规划、设计、开发和测试。
- 灵活性较低:数据仓库的设计在很大程度上是为了优化查询性能,但在需求变更或快速响应方面的灵活性较低。
8. 数据仓库的未来趋势
随着大数据和云计算的兴起,数据仓库的发展也呈现出新的趋势:
- 云数据仓库:云计算的普及使得云数据仓库(如 Amazon Redshift、Google BigQuery、Snowflake 等)受到广泛关注。云数据仓库具有高扩展性、按需计费的特点,可以显著降低数据仓库的建设和维护成本。
- 实时数据仓库:随着数据更新频率的增加,传统的批量数据仓库难以满足实时需求,实时数据仓库应运而生,能够快速响应数据变化,支持实时分析。
- 自助式分析:未来数据仓库将更加支持自助分析,用户可以使用自然语言处理和拖拽式操作,自主完成分析和报表生成。
- 数据湖与数据仓库的融合:数据湖的出现提供了灵活的数据存储和管理方式。数据湖和数据仓库的融合为企业提供了高效的数据管理和分析能力,帮助企业实现从原始数据到分析决策的完整
相关文章:
【数据仓库】
数据仓库:概念、架构与应用 目录 什么是数据仓库数据仓库的特点数据仓库的架构 3.1 数据源层3.2 数据集成层(ETL)3.3 数据存储层3.4 数据展示与应用层 数据仓库的建模方法 4.1 星型模型4.2 雪花模型4.3 星座模型 数据仓库与数据库的区别数据…...
计算机毕业设计——ssm基于HTML5的互动游戏新闻网站的设计与实现录像演示2021
作者:程序媛9688开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等。 🌟文末获取源码数据库🌟感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题)࿰…...
ubuntu上申请Let‘s Encrypt HTTPS 证书
Ubuntu 16.04及以上版本通常自带Snapd,如果你的系统还没有安装,可以通过以下命令安装: 安装Certbot# 使用Snap安装Certbot,确保你获得的是最新版本: bash sudo snap install --classic certbot准备Certbot命令# 确保C…...

解决VMware虚拟机的字体过小问题
前言: (1)先装VMware VMware17Pro虚拟机安装教程(超详细)-CSDN博客 (2)通过清华等镜像网站安装好Ubuntu镜像,下面贴上链接 教程虚拟机配置我没有做,因为学校给了现成的虚拟机~~大家需要的自己…...
java-web-day6-下-知识点小结
JDBC JDBC --是sun公司定义的一套操作所有关系型数据库的规范, 也就是接口api 数据库驱动 --是各个数据库厂家根据JDBC规范的具体实现, 例如mysql的驱动依赖 Lombok 简介 Lombok是一个实用的java类库, 通过注解的方式自动生成构造器, getter/setter, equals, hashcode, toStr…...

Cisco Packet Tracer 8.0 路由器静态路由配置
文章目录 静态路由简介一、定义与特点二、配置与命令三、优点与缺点四、应用场景 一,搭建拓扑图二,配置pc IP地址三,pc0 ping pc1 timeout四,配置路由器Router0五,配置路由器Router1六,测试 静态路由简介 …...

Unity3D学习FPS游戏(3)玩家第一人称视角转动和移动
前言:上一篇实现了角色简单的移动控制,但是实际游戏中玩家的视角是可以转动的,并根据转动后视角调整移动正前方。本篇实现玩家第一人称视角转动和移动,觉得有帮助的话可以点赞收藏支持一下! 玩家第一人称视角 修复小问…...

引领数字未来:通过企业架构推动数字化转型的策略与实践
在全球经济迅速数字化的背景下,企业正面临日益复杂的挑战。为了保持竞争优势,企业必须迅速调整其业务模式,采用先进的技术,推动业务创新。企业架构(EA)作为企业转型的战略工具,在这一过程中发挥…...

计算机毕业设计Python+大模型恶意木马流量检测与分类 恶意流量监测 随机森林模型 深度学习 机器学习 数据可视化 大数据毕业设计 信息安全 网络安全
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! Python大模型恶意木马流量检…...

ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用
本文整理于 2024 年云栖大会阿里云智能集团高级技术专家金吉祥(牟羽)带来的主题演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》 云消息队列 ApsaraMQ 全系列产品 Serverless 化,支持按量付费、自适应弹性、跨可…...

Xcode 16.1 (16B40) 发布下载 - Apple 平台 IDE
Xcode 16.1 (16B40) 发布下载 - Apple 平台 IDE IDE for iOS/iPadOS/macOS/watchOS/tvOS/visonOS 发布日期:2024 年 10 月 28 日 Xcode 16.1 包含适用于 iOS 18.1、iPadOS 18.1、Apple tvOS 18.1、watchOS 11.1、macOS Sequoia 15.1 和 visionOS 2.1 的 SDK。Xco…...

使用ONNX Runtime对模型进行推理
今天的深度学习可谓是十分热门,好像各行各业的人都会一点。而且特别是Hinton获得诺奖后,更是给深度学习添了一把火。星主深知大家可能在平时仅仅将模型训练好后就不会去理会它了,至于模型的部署,很多人都没有相关经验。由于我最近…...

五款pdf转换成word免费版,谁更胜一筹?
作为一名在都市丛林中奋斗的打工人,每天处理各种文件是家常便饭。尤其是PDF和Word文档之间的转换,简直是日常工作中不可或缺的一部分。今天,我就来和大家分享一下我使用过的几款PDF转Word免费版工具,看看它们的表现如何。 一、福…...

【C++】踏上C++学习之旅(四):细说“内联函数“的那些事
文章目录 前言1. "内联函数"被创造出来的意义2. 内联函数的概念2.1 内联函数在代码中的体现2.2 普通函数和内联函数的汇编代码 3. 内联函数的特性(重点)4. 总结 前言 本章来聊一聊C的创作者"本贾尼"大佬,为什么要创作出…...
SVN克隆或更新遇到Error: Checksum mismatch for xxx
文章目录 前言问题的产生探索解决方案正式的解决方法背后的故事总结 前言 TortoiseSVN 作为版本控制常用的工具,有一个更为人们熟知的名字 SVN,客观的讲SVN的门槛相比Git而言还是低一些的,用来存储一些文件并保留历史记录比较方便࿰…...

QT交互界面:实现按钮运行脚本程序
一.所需运行的脚本 本篇采用上一篇文章的脚本为运行对象,实现按钮运行脚本 上一篇文章:从0到1:QT项目在Linux下生成可以双击运用的程序(采用脚本)-CSDN博客 二.调用脚本的代码 widget.cpp中添加以下代码 #include &…...
驱动和芯片设计哪个难
驱动和芯片设计哪个难 芯片设计和驱动开发 芯片设计和驱动开发 都是具有挑战性的工作,它们各自有不同的难点和要求。 对于芯片设计,它是一个集高精尖于一体的复杂系统工程,涉及到从需求分析、前端设计、后端设计到流片的全过程。 芯片设计的…...
【云原生】云原生后端:监控与观察性
目录 引言一、监控的概念1.1 指标监控1.2 事件监控1.3 告警管理 二、观察性的定义三、实现监控与观察性的方法3.1 指标收集与监控3.2 日志管理3.3 性能分析 四、监控与观察性的最佳实践4.1 监控工具选择4.2 定期回顾与优化 结论参考资料 引言 在现代云原生架构中,监…...
在 ubuntu20.04 安装 docker
1、替换清华源 替换 sources.list 里面的内容 sudo vim /etc/apt/sources.list# 默认注释了源码镜像以提高 apt update 速度,如有需要可自行取消注释 deb https://mirrors.tuna.tsinghua.edu.cn/ubuntu/ focal main restricted universe multiverse # deb-src htt…...

前端开发设计模式——观察者模式
目录 一、定义和特点 1. 定义 2. 特点 二、实现方式 1. 使用 JavaScript 实现观察者模式的基本结构 2. 实际应用中的实现示例 三、使用场景 1. 事件处理 2. 数据绑定 3. 异步通信 4. 组件通信 四、优点 1. 解耦和灵活性 2. 实时响应和数据一致性 3. 提高代码的可…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...