ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战
从无人机监测农田到卫星数据支持气候研究,空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而,对于许多专业人士而言,如何高效地处理、分析和应用遥感数据仍是一个充满挑战的课题。本教程应运而生,致力于为您搭建一条从入门到精通的学习之路,通过领先的AI技术与实战案例帮助您掌握遥感数据处理的核心技能。
在本内容中,通过系统化的模块设计和丰富的实战案例,深入理解和掌握遥感数据的处理与计算。课程不仅涵盖了从零基础入门Python编程、OpenCV视觉处理的基础知识,还将借助ChatGPT智能支持,引导您掌握遥感影像识别和分析的进阶技术。更为重要的是,通过15个经过精心设计的真实案例,深度参与地质监测、城市规划、农业分析、生态评估等不同场景下的遥感应用实践。层层递进、结构严谨,帮助您系统性掌握从数据预处理、图像增强、特征提取到机器学习建模的每一个关键环节。
《ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战》将系统掌握空天地遥感数据分析的全流程,深度融入机器学习、计算机视觉和智能算法的前沿技术。涵盖从基础搭建到实战应用,通过遥感数据的获取、处理、分析到模型搭建的完整学习路径。特别设计了15个真实案例,免费提供11.5G的机器学习数据,涵盖土壤成分分析、农作物分类、森林火灾检测、水体动态监测等实际应用,并重点探索植被健康、空气污染、城市发展和地质灾害预测等关键领域。
【内容简介】:
第一部分:未来已来——工具与开发环境搭建
1.1 机器学习基础
(1)监督学习
(2)非监督学习
(3)深度学习
1.2 GPT安装与用法
(1)ChatGPT 简介
(2)ChatGPT 使用方法
1.3 Python安装与用法
(1)Python简介
(2)Python的特点
(3)Python的应用场景
(4)安装 Python
(5)Jupyter Notebook
(6)Anaconda
(7)创建第一个程序
第二部分:千里眼——遥感数据应用全流程【上机实操】
2.1 遥感数据获取
(1)遥感定义与原理
(2)常见遥感数据源
(3)遥感数据获取方法
2.2 遥感数据处理
(1)图像去噪
(2)几何校正
(3)大气校正
2.3 遥感数据计算
(1)波段选择
(2)波段计算
2.4 案例实战:计算家乡的土壤成分含量
(1)计算过程
(2)程序实现
(3)计算结果
(4)结果制图
第三部分:地面数据——图像分类
3.1 学习数据增广
(1)什么是数据增广
(2)数据增广的代码实现
3.2 地面化验数据综合处理
(1)地面数据的作用
(2)地面数据采样方案设计和化验方法
(3)数据读取与初步检查
(4)数据清洗与处理
(5)数据的可视化与分布分析
3.3 程序实现
(1)描述性统计分析
(2)数据分布
(3)相关性分析
(4)数据正态性检验
(5)元素之间的线性回归分析
(6)箱线图和异常值分析
(7)两元素的T检验
3.4 案例实战:自动对农作物进行分类
(1)导入必要的库并准备数据
(2)特征提取(图像降维)
(3)标签编码
(4)训练支持向量机模型
(5)对测试集图片进行分类预测
(6)评估模型性能
(7)使用网格搜索优化SVM参数
(8)使用网格搜索优化SVM参数
(9)使用PCA进行降维
第四部分:无人机数据——目标检测
4.1 学习制作标签数据
(1)标签数据的重要性
(2)制作和标注机器学习的标签数据
(3)常见的标注格式
(4)LabelImg
(5)标注
(6)标注VOC格式
(7)标注YOLO格式
(9)标注并导出为COCO格式
4.2 无人机多光谱数据综合处理
(1)无人机机载飞行作业
(2)地面同步数据特点
(3)无人机数据处理
4.3 程序实现
(1)数据准备与预处理
(2)环境配置
(3)算法流程
(4)实现基于边缘和轮廓的检测
(5)解释代码
(6)检查结果
4.4 案例实战:自动检测森林火灾范围
(1)林火
(2)环境设置与依赖安装
(3)加载森林图像和对应的标注文件
(4)实现火点检测算法
(5)批量处理森林图像并标记火灾点
第五部分:卫星数据——变化检测
5.1 学习遥感指数模型
(1)算法与模型库
(2)计算叶绿素含量
5.2 卫星数据综合处理
(1)计算二价铁含量
(2)计算全球环境监测指数
5.3 程序实现
(1)导入必要的库
(2)设置数据路径
(3)加载遥感图像
(4)水体识别算法
(5)变化检测算法
(6)保存变化结果
(7)导出变化统计表
(8)结果展示
5.4 案例实战:自动实现水体动态监测
(1)导入必要的库
(2)加载遥感图像并裁剪到一致大小
(3)计算水体指数 (NDWI)
(4)变化检测
(5)保存变化检测结果
(6)导出变化统计表
第六部分:多源数据——联合分析
6.1 学习图像自动配准
(1)图像配准
(2)自动配准的步骤
6.2 空天地数据综合处理
(1)图像配准
(2)导入必要的库
(3)读取无人机和卫星图像
(4)生成地理控制点 (GCP)
(5)应用配准算法
(6)保存配准后的无人机图像
(7)保存配准的坐标对应数据
6.3 程序实现
(1)导入必要的库
(2)预处理
(3)特征检测和匹配
(4)图像配准
(5)保存
6.4 案例实战:城市建筑物检测与变化监测
(1)城市建筑物检测与变化监测的原理
(2)图像预处理
(3)建筑物检测
(4)变化检测
(5)输出与可视化
(6)实战
第七部分:研究热点攻关
7.1 案例实战:农田作物分类与产量估算
7.2 案例实战:土地利用与土地覆盖分类
7.3 案例实战:植被健康监测与病害检测
7.4 案例实战:海岸侵蚀监测变化分析
7.5 案例实战:空气污染物浓度遥感监测
7.6 案例实战:沙漠化监测与土地退化分析
7.7 案例实战:城市违章建筑监控
7.8 案例实战:碳汇估算与生态服务分析
7.9 案例实战:地表温度与热岛效应分析
7.10案例实战:地质灾害预测与监测
相关文章:
ChatGPT、Python和OpenCV支持下的空天地遥感数据识别与计算——从0基础到15个案例实战
从无人机监测农田到卫星数据支持气候研究,空天地遥感数据正以前所未有的方式为科研和商业带来深刻变革。然而,对于许多专业人士而言,如何高效地处理、分析和应用遥感数据仍是一个充满挑战的课题。本教程应运而生,致力于为您搭建一…...

Flume采集Kafka数据到Hive
版本: Kafka:2.4.1 Flume:1.9.0 Hive:3.1.0 Kafka主题准备: Hive表准备:确保hive表为:分区分桶、orc存储、开启事务 Flume准备: 配置flume文件: /opt/datasophon/flume-1…...
大语言模型训练与推理模型构建源码解读(huggingface)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、llama训练模型构建源码解读1、模型构建代码(自己搭建)2、训练模型3、模型调用方法4、训练模型init方法(class LlamaForCausalLM(LlamaPreTrainedModel))5、训练模型forward方法(class Llam…...

第三十三篇:TCP协议如何避免/减少网络拥塞,TCP系列八
一、流量控制 一般来说,我们总是希望数据传输得更快一些,但是如果发送方把数据发送得太快,接收方可能来不及接收,造成数据的丢失,数据重发,造成网络资源的浪费甚至网络拥塞。所谓的流量控制(fl…...

并发编程(2)——线程管控
目录 二、day2 1. 线程管控 1.1 归属权转移 1.2 joining_thread 1.2.1 如何使用 joining_thread 1.3 std::jthread 1.3.1 零开销原则 1.3.2 线程停止 1.4 容器管理线程对象 1.4.1 使用容器 1.4.2 如何选择线程运行数量 1.5 线程id 二、day2 今天学习如何管理线程&a…...
【数据仓库】
数据仓库:概念、架构与应用 目录 什么是数据仓库数据仓库的特点数据仓库的架构 3.1 数据源层3.2 数据集成层(ETL)3.3 数据存储层3.4 数据展示与应用层 数据仓库的建模方法 4.1 星型模型4.2 雪花模型4.3 星座模型 数据仓库与数据库的区别数据…...
计算机毕业设计——ssm基于HTML5的互动游戏新闻网站的设计与实现录像演示2021
作者:程序媛9688开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等。 🌟文末获取源码数据库🌟感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题)࿰…...
ubuntu上申请Let‘s Encrypt HTTPS 证书
Ubuntu 16.04及以上版本通常自带Snapd,如果你的系统还没有安装,可以通过以下命令安装: 安装Certbot# 使用Snap安装Certbot,确保你获得的是最新版本: bash sudo snap install --classic certbot准备Certbot命令# 确保C…...

解决VMware虚拟机的字体过小问题
前言: (1)先装VMware VMware17Pro虚拟机安装教程(超详细)-CSDN博客 (2)通过清华等镜像网站安装好Ubuntu镜像,下面贴上链接 教程虚拟机配置我没有做,因为学校给了现成的虚拟机~~大家需要的自己…...
java-web-day6-下-知识点小结
JDBC JDBC --是sun公司定义的一套操作所有关系型数据库的规范, 也就是接口api 数据库驱动 --是各个数据库厂家根据JDBC规范的具体实现, 例如mysql的驱动依赖 Lombok 简介 Lombok是一个实用的java类库, 通过注解的方式自动生成构造器, getter/setter, equals, hashcode, toStr…...

Cisco Packet Tracer 8.0 路由器静态路由配置
文章目录 静态路由简介一、定义与特点二、配置与命令三、优点与缺点四、应用场景 一,搭建拓扑图二,配置pc IP地址三,pc0 ping pc1 timeout四,配置路由器Router0五,配置路由器Router1六,测试 静态路由简介 …...

Unity3D学习FPS游戏(3)玩家第一人称视角转动和移动
前言:上一篇实现了角色简单的移动控制,但是实际游戏中玩家的视角是可以转动的,并根据转动后视角调整移动正前方。本篇实现玩家第一人称视角转动和移动,觉得有帮助的话可以点赞收藏支持一下! 玩家第一人称视角 修复小问…...

引领数字未来:通过企业架构推动数字化转型的策略与实践
在全球经济迅速数字化的背景下,企业正面临日益复杂的挑战。为了保持竞争优势,企业必须迅速调整其业务模式,采用先进的技术,推动业务创新。企业架构(EA)作为企业转型的战略工具,在这一过程中发挥…...

计算机毕业设计Python+大模型恶意木马流量检测与分类 恶意流量监测 随机森林模型 深度学习 机器学习 数据可视化 大数据毕业设计 信息安全 网络安全
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! Python大模型恶意木马流量检…...

ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用
本文整理于 2024 年云栖大会阿里云智能集团高级技术专家金吉祥(牟羽)带来的主题演讲《ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用》 云消息队列 ApsaraMQ 全系列产品 Serverless 化,支持按量付费、自适应弹性、跨可…...

Xcode 16.1 (16B40) 发布下载 - Apple 平台 IDE
Xcode 16.1 (16B40) 发布下载 - Apple 平台 IDE IDE for iOS/iPadOS/macOS/watchOS/tvOS/visonOS 发布日期:2024 年 10 月 28 日 Xcode 16.1 包含适用于 iOS 18.1、iPadOS 18.1、Apple tvOS 18.1、watchOS 11.1、macOS Sequoia 15.1 和 visionOS 2.1 的 SDK。Xco…...

使用ONNX Runtime对模型进行推理
今天的深度学习可谓是十分热门,好像各行各业的人都会一点。而且特别是Hinton获得诺奖后,更是给深度学习添了一把火。星主深知大家可能在平时仅仅将模型训练好后就不会去理会它了,至于模型的部署,很多人都没有相关经验。由于我最近…...

五款pdf转换成word免费版,谁更胜一筹?
作为一名在都市丛林中奋斗的打工人,每天处理各种文件是家常便饭。尤其是PDF和Word文档之间的转换,简直是日常工作中不可或缺的一部分。今天,我就来和大家分享一下我使用过的几款PDF转Word免费版工具,看看它们的表现如何。 一、福…...

【C++】踏上C++学习之旅(四):细说“内联函数“的那些事
文章目录 前言1. "内联函数"被创造出来的意义2. 内联函数的概念2.1 内联函数在代码中的体现2.2 普通函数和内联函数的汇编代码 3. 内联函数的特性(重点)4. 总结 前言 本章来聊一聊C的创作者"本贾尼"大佬,为什么要创作出…...
SVN克隆或更新遇到Error: Checksum mismatch for xxx
文章目录 前言问题的产生探索解决方案正式的解决方法背后的故事总结 前言 TortoiseSVN 作为版本控制常用的工具,有一个更为人们熟知的名字 SVN,客观的讲SVN的门槛相比Git而言还是低一些的,用来存储一些文件并保留历史记录比较方便࿰…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

网站指纹识别
网站指纹识别 网站的最基本组成:服务器(操作系统)、中间件(web容器)、脚本语言、数据厍 为什么要了解这些?举个例子:发现了一个文件读取漏洞,我们需要读/etc/passwd,如…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...