当前位置: 首页 > news >正文

R学习笔记-单因素重复测量方差分析

R语言之重复测量方差分析——ezANOVA的使用与解析 - 知乎

单因素重复测量方差分析(One-Way Repeated Measures ANOVA)——R软件实现 - 梦特医数通

### 清空environment
rm(list = ls())
### 加载包
if (!require("tidyverse")) install.packages("tidyverse")
library(tidyverse)#用于数据清理、操作、可视化和分析
if (!require("conflicted")) install.packages("conflicted")
library(conflicted)#让 R 遇到冲突时抛出错误,并让您明确选择要调用的函数
library(readxl)
if (!require("ez")) install.packages("ez")#用于方差分析
library(ez)

### 读取数据
file_path <- "D:/LLYdata/EEG_EMG_expdata/behavior/result/MATLAB/analysis_data.xlsx"
data <- read_excel(file_path, range = cell_rows(1:25))#读取excel的第1到25行的所有列
### 设置数据
# 选择需要的四列并转换为长格式
data_long <- data %>%rstatix::select(goRT_uni_gocorrect, goRT_i_clgocorrect, goRT_i_crgocorrect, goRT_onlygocorrect) %>%pivot_longer(cols = everything(), names_to = "condition", values_to = "RT") %>%mutate(subject = rep(1:(nrow(data)), each = 4))  # 为每个被试添加一个唯一的标识符

# 计算描述性统计
means <- c(mean(data$goRT_uni_gocorrect), mean(data$goRT_i_clgocorrect), mean(data$goRT_i_crgocorrect), mean(data$goRT_onlygocorrect))
sds <- c(sd(data$goRT_uni_gocorrect), sd(data$goRT_i_clgocorrect), sd(data$goRT_i_crgocorrect), sd(data$goRT_onlygocorrect))
ns <- rep(nrow(data), 4)
# 生成结果数据框
result <- data.frame(Condition = c("goRT_uni_gocorrect", "goRT_i_clgocorrect", "goRT_i_crgocorrect", "goRT_onlygocorrect"),Mean = means,SD = sds,N = ns
)# 使用 ezANOVA 进行单因素重复测量方差分析
anova_results <- ezANOVA(data = data_long,dv = RT,       # 因变量wid = subject,           # 受试者within = condition,      # 重复测量因素detailed = TRUE
)
# 成对比较
AOV<-aov(RT ~ condition,data_long) #检验不同时间之间的差异

# 打开文件以写入
sink(output_file)
# 添加自定义文本
cat("###Condition (uni/i_cl/i_cr/onlygo) 的重复测量方差分析###\n\n")
# 描述性结果
cat("Condition\tMean\tSD\tN\n")
for (i in 1:nrow(result)) {cat(paste(result$Condition[i], "\t", round(result$Mean[i], 2), "\t", round(result$SD[i], 2), "\t", result$N[i], "\n"))
}
# 方差分析结果
print(anova_results)
# 事后两两比较结果
TukeyHSD(AOV,p.adjust.methods="bonferroni") 
# 关闭文件
sink()

# 保留的变量
keep_vars <- c("data", "file_path", "output_file")
# 获取当前环境中的所有变量
all_vars <- ls()
# 找出需要删除的变量
vars_to_remove <- setdiff(all_vars, keep_vars)
# 删除不需要的变量
rm(list = vars_to_remove)

rm(list = ls())#清空environment
### 加载包
if (!require("tidyverse")) install.packages("tidyverse")
library(tidyverse)#用于数据清理、操作、可视化和分析
if (!require("conflicted")) install.packages("conflicted")
library(conflicted)#让 R 遇到冲突时抛出错误,并让您明确选择要调用的函数
library(readxl)
library(ez)### 读取数据
file_path <- "D:/LLYdata/EEG_EMG_expdata/behavior/result/MATLAB/analysis_data.xlsx"
data <- read_excel(file_path, range = cell_rows(1:25))#读取excel的第1到25行的所有列
# 设置结果输出文件路径
output_file <- "D:/LLYdata/EEG_EMG_expdata/behavior/result/R/results.txt"################################################################
###go RT: Condition (uni/i_cl/i_cr/onlygo) 的重复测量方差分析###
################################################################
# 计算描述性统计
means <- c(mean(data$goRT_uni_gocorrect), mean(data$goRT_i_clgocorrect), mean(data$goRT_i_crgocorrect), mean(data$goRT_onlygocorrect))
sds <- c(sd(data$goRT_uni_gocorrect), sd(data$goRT_i_clgocorrect), sd(data$goRT_i_crgocorrect), sd(data$goRT_onlygocorrect))
ns <- rep(nrow(data), 4)
# 生成结果数据框
result <- data.frame(Condition = c("goRT_uni_gocorrect", "goRT_i_clgocorrect", "goRT_i_crgocorrect", "goRT_onlygocorrect"),Mean = means,SD = sds,N = ns
)# 选择需要的四列并转换为长格式
data_long <- data %>%rstatix::select(goRT_uni_gocorrect, goRT_i_clgocorrect, goRT_i_crgocorrect, goRT_onlygocorrect) %>%pivot_longer(cols = everything(), names_to = "condition", values_to = "RT") %>%mutate(subject = rep(1:(nrow(data)), each = 4))  # 为每个被试添加一个唯一的标识符# 使用 ezANOVA 进行单因素重复测量方差分析
anova_results <- ezANOVA(data = data_long,dv = RT,       # 因变量wid = subject,           # 受试者within = condition,      # 重复测量因素detailed = TRUE
)
# 成对比较
AOV<-aov(RT ~ condition,data_long) #检验不同时间之间的差异# 打开文件以写入
sink(output_file)
# 添加自定义文本
cat("###Condition (uni/i_cl/i_cr/onlygo) 的重复测量方差分析###\n\n")
# 描述性结果
cat("Condition\tMean\tSD\tN\n")
for (i in 1:nrow(result)) {cat(paste(result$Condition[i], "\t", round(result$Mean[i], 2), "\t", round(result$SD[i], 2), "\t", result$N[i], "\n"))
}
# 方差分析结果
print(anova_results)
# 事后两两比较结果
TukeyHSD(AOV,p.adjust.methods="bonferroni") 
# 关闭文件
sink()

相关文章:

R学习笔记-单因素重复测量方差分析

R语言之重复测量方差分析——ezANOVA的使用与解析 - 知乎 单因素重复测量方差分析(One-Way Repeated Measures ANOVA)——R软件实现 - 梦特医数通 ### 清空environment rm(list ls()) ### 加载包 if (!require("tidyverse")) install.packages("tidyverse&quo…...

HTML练习题:彼岸的花(web)

展示效果: 代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>彼岸の花</title><style…...

(蓝桥杯C/C++)——常用库函数

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 一、 二分查找 1.二分查找的前提 2.binary_ search函数 3.lower_bound和upper_bound 二、排序 1.sort概念 2.sort的用法 3.自定义比较函数 三、全排列 1.next p…...

GPT-Sovits-2-微调模型

1. 大致步骤 上一步整理完数据集后&#xff0c;此步输入数据, 微调2个模型VITS和GPT&#xff0c;位置在 <<1-GPT-SoVITS-tts>>下的<<1B-微调训练>> 页面的两个按钮分别执行两个文件: <./GPT_SoVITS/s2_train.py> 这一步微调VITS的预训练模型…...

【数据结构 | PTA】懂蛇语

懂蛇语 在《一年一度喜剧大赛》第二季中有一部作品叫《警察和我之蛇我其谁》&#xff0c;其中“毒蛇帮”内部用了一种加密语言&#xff0c;称为“蛇语”。蛇语的规则是&#xff0c;在说一句话 A 时&#xff0c;首先提取 A 的每个字的首字母&#xff0c;然后把整句话替换为另一…...

Python——自动化发送邮件

在数字化时代&#xff0c;电子邮件是商务沟通和个人联络的重要工具。自动化邮件发送可以节省时间&#xff0c;提高效率。Python&#xff0c;作为一种强大且灵活的编程语言&#xff0c;提供了多种库来支持邮件的自动化发送。本文将详细介绍如何使用Python的smtplib和email库来编…...

MTKLauncher_布局页面分析

文章目录 前言遇到的困难点针对性解决困难 需求相关资料Launcher3 源码 目录简单介绍Launcher3 简介及页面布局分析UI整体架构数据加载布局加载布局加载核心思想device_profiles.xml 加载InvariantDeviceProfileinitGrid(context, gridName)getPredefinedDeviceProfilesinvDist…...

C#实现隐藏和显示任务栏

实现步骤 为了能够控制Windows任务栏&#xff0c;我们需要利用Windows API提供的功能。具体来说&#xff0c;我们会使用到user32.dll中的两个函数&#xff1a;FindWindow和ShowWindow。这两个函数可以帮助我们找到任务栏窗口&#xff0c;并对其执行显示或隐藏的操作 引入命名空…...

基于springboot+vue实现的公司财务管理系统(源码+L文+ppt)4-102

基于springbootvue实现的公司财务管理系统&#xff08;源码L文ppt&#xff09;4-102 摘要 本系统是基于SpringBoot框架开发的公司财务管理系统,该系统包含固定资产管理、资产申领管理、资产采购管理、员工工资管理等功能。公司财务管理系统是一种帮助公司进行有效资金管理、会…...

rnn/lstm

tip&#xff1a;本人比较小白&#xff0c;看到july大佬的文章受益匪浅&#xff0c;现在其文章基础上加上自己的归纳、理解&#xff0c;以及gpt的答疑&#xff0c;如果有侵权会删。 july大佬文章来源&#xff1a;如何从RNN起步&#xff0c;一步一步通俗理解LSTM_rnn lstm-CSDN博…...

袋鼠云产品功能更新报告12期|让数据资产管理更高效

本期&#xff0c;我们更新和优化了数据资产平台相关功能&#xff0c;为您提供更高效的产品能力。以下为第12期袋鼠云产品功能更新报告&#xff0c;请继续阅读。 一、【元数据】重点更新 &#xff5c;01 元数据管理优化&#xff0c;支持配置表生命周期 之前系统中缺少一个可以…...

MATLAB——入门知识

内容源于b站清风数学建模 目录 1.帮助文档 2.注释 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 4.2.永久改 5.常用函数 6.易错点 1.帮助文档 doc sum help sum edit sum 2.注释 ctrl R/T 3.特殊字符 4.设置MATLAB数值显示格式 4.1.临时更改 format lon…...

C#从零开始学习(用户界面)(unity Lab4)

这是书本中第四个unity Lab 在这次实验中,将学习如何搭建一个开始界面 分数系统 点击球,会增加分数 public void ClickOnBall(){Score;}在OneBallBehaviour类添加下列方法 void OnMouseDown(){GameController controller Camera.main.GetComponent<GameController>();…...

Axure PR 9 多级下拉清除选择器 设计交互

大家好&#xff0c;我是大明同学。 Axure选择器是一种在交互设计中常用的组件&#xff0c;这期内容&#xff0c;我们来探讨Axure中选择器设计与交互技巧。 OK&#xff0c;这期内容正式开始 下拉列表选择输入框元件 创建选择输入框所需的元件 1.在元件库中拖出一个矩形元件。…...

分布式项目pom配置

1. 父项目打包方式为 pom <packaging>pom</packaging> 2. 父项目版本配置 <properties><maven.compiler.source>17</maven.compiler.source><maven.compiler.target>17</maven.compiler.target><project.build.sourceEncod…...

2. Flink快速上手

文章目录 1. 环境准备1.1 系统环境1.2 安装配置Java 8和Scala 2.121.3 使用集成开发环境IntelliJ IDEA1.4 安装插件2. 创建项目2.1 创建工程2.1.1 创建Maven项目2.1.2 设置项目基本信息2.1.3 生成项目基本框架2.2 添加项目依赖2.2.1 添加Flink相关依赖2.2.2 添加slf4j-nop依赖2…...

Java-I/O框架06:常见字符编码、字符流抽象类

视频链接&#xff1a;16.16 字符流抽象类_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Tz4y1X7H7?spm_id_from333.788.videopod.episodes&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5&p16 1.常见字符编码 IOS-8859-1收录了除ASCII外&#xff0c;还包括西欧…...

计算机网络-MSTP的基础概念

前面我们大致了解了MSTP的由来&#xff0c;是为了解决STP/RSTP只有一根生成树导致的VLAN流量负载分担与次优路径问题&#xff0c;了解MSTP采用实例映射VLAN的方式实现多实例生成树&#xff0c;MSTP有很多的理论概念需要知道&#xff0c;其实与其它的知识一样理论复杂配置还好的…...

P1037 [NOIP2002 普及组] 产生数

[NOIP2002 普及组] 产生数 题目描述 给出一个整数 n n n 和 k k k 个变换规则。 规则&#xff1a; 一位数可变换成另一个一位数。规则的右部不能为零。 例如&#xff1a; n 234 , k 2 n234,k2 n234,k2。有以下两个规则&#xff1a; 2 ⟶ 5 2\longrightarrow 5 2⟶5。 …...

【分布式知识】分布式对象存储组件-Minio

文章目录 什么是minio核心特点&#xff1a;使用场景&#xff1a;开发者工具&#xff1a;社区和支持&#xff1a; 核心概念什么是对象存储&#xff1f;MinIO 如何确定对对象的访问权限&#xff1f;我可以在存储桶内按文件夹结构组织对象吗&#xff1f;如何备份和恢复 MinIO 上的…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

Xshell远程连接Kali(默认 | 私钥)Note版

前言:xshell远程连接&#xff0c;私钥连接和常规默认连接 任务一 开启ssh服务 service ssh status //查看ssh服务状态 service ssh start //开启ssh服务 update-rc.d ssh enable //开启自启动ssh服务 任务二 修改配置文件 vi /etc/ssh/ssh_config //第一…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

负载均衡器》》LVS、Nginx、HAproxy 区别

虚拟主机 先4&#xff0c;后7...

Ubuntu 安装 Mysql 数据库

首先更新apt-get工具&#xff0c;执行命令如下&#xff1a; apt-get upgrade安装Mysql&#xff0c;执行如下命令&#xff1a; apt-get install mysql-server 开启Mysql 服务&#xff0c;执行命令如下&#xff1a; service mysql start并确认是否成功开启mysql,执行命令如下&am…...

四、Sqoop 导入表数据子集

作者&#xff1a;IvanCodes 日期&#xff1a;2025年6月4日 专栏&#xff1a;Sqoop教程 当不需要将关系型数据库中的整个表一次性导入&#xff0c;而是只需要表中的一部分数据时&#xff0c;Sqoop 提供了多种方式来实现数据子集的导入。这通常通过过滤条件或选择特定列来完成。 …...

【Ragflow】27.RagflowPlus(v0.4.1):小版本迭代,问题修复与功能优化

概述 RagflowPlus v0.4.0 在发布后&#xff0c;收到了积极的反馈&#xff0c;同时也包含一些问题。 本次进行一轮小版本更新&#xff0c;发布 v0.4.1 版本&#xff0c;对已知问题进行修复&#xff0c;并对部分功能进行进一步优化。 开源地址&#xff1a;https://github.com/…...