当前位置: 首页 > news >正文

慢sql优化和Explain解析

要想程序跑的快,sql优化不可懈怠!今日来总结一下常用的慢sql的分析和优化的方法。

1、慢sql的执行分析:

大家都知道分析一个sql语句执行效率的方法是用explain关键词:
举例:sql:select * from test where bussiness_date =‘2024-10-30’;
分析: explain select * from test where bussiness_date =‘2024-10-30’;
分析执行结果:
在这里插入图片描述
给business_date 加上一个索引,索引名称:test_bussiness_date_IDX
再执行分析:
在这里插入图片描述
对照着这两个分析结果下边来说下每一列都是什么意思

id:

在一个大的查询语句中,每个select关键字都对应一个id,代表多个表之间的查询顺序,或者包含子查询语句中的顺序,id顺序分为3中情况:
(1)id相同,执行顺序从上到下(因为小编举例都是单表,所以分析结果只有一行数据,如果sql中包括子查询或者多表联查,分析结果会有多行,感兴趣读者可以试试)
(2)id不同,如果是子查询,id值会递增,执行顺序是从大到小的。id越大优先级越高,越先被执行。
(3)id相同和不同的同时存在,此时id相同的为一组,id越大越优先执行,组内id相同,从上到下依次执行(比较复杂的sql会出现这种情况)。

select_type

select关键字对应的查询类型,示例中的 SIMPLE 表示简单子查询。不光这一种类型:具体类型解释如下:
(1)simple 简单子查询
(2)primary 最外层子查询
(3)subquery 第一层子查询,再select 或者where中包含了子查询。
(4)derived 派生表 再from中包含的子查询,会被标记为衍生查询,会把查询结果放到一个临时表中。
(5)union 出现在union后面的查询
(6)union result union联合查询获取结果的select,如果有两个select查询语句,他们之间用union连接起来查询,那么第二个select会被标记为union,union的结果被标记为union result。

table

表名,表示这一行的数据是那个表的,如果有别名,会显示别名。

partitions

访问的分区表信息。

type(优化重要信息字段)

针对单表的访问方法,一般来说保证查询至少达到range级别,最好达到ref。type其他类型详解:
性能从好–>差:依次是 system->const->eq_ref->ref->range->index->all.
如果出现index或者all就需要优化了,以下对每个值做详细的解释:
(1)system:表中只有一行记录,system是const的特例,几乎不会出现这种情况,可以忽略不计。
(2)const: 将主键索引或者唯一索引放到where条件中查询,mqsql可以将查询条件转变成一个常量,只匹配一行数据,索引依次就找到数据了。
(3)eq_ref: 同ref差不多,但返回结果只有一条记录。
(4)ref:不是主键索引,也不是唯一索引,就是普通的索引,可能会返回多个符合条件的行。
(5)range:只用一个索引来选择行,key列显示所用的索引名称。
(6)index:也是读取全表,但是是从索引中读取。
(7)all:全表查询,从磁盘中读取。效率最差。

possible_keys

可能用到的索引,查询中涉及字段上若存在索引,则会被列出来,表示可能用到的索引,但是并不是实际上一定会用到的索引。

key

实际用到的索引。

key_len

表示索引中使用的字节数。通过该属性可以知道在查询中使用的索引长度,这个长度是最大可能长度,并非实际使用长度,在不损失准确性的情况下,长度越短查询效率越高。

ref

关联id等信息。当使用索引列等值查询时,与索引列进行等值匹配的对象信息。

rows:

预估的需要读取的记录条数。根据表信息统计及索引的使用情况,大致估算找到所需记录需要读取的行数,row越小越好。

filtered

查到到所需记录占总扫描记录数的比例。

Extra(优化重要信息字段)

Extra:一些额外的信息。
当此字段中出现以下的两个值时,意味着mqSql根本不能使用索引,效率会收到重大影响,要尽可能的对此进行优化。
Using fileSort(使用文件排序) 和 Using temporary(使用临时表)
下面对每个值进行详细的解释:
(1)Using index:使用了覆盖索引,避免访问了表的数据行,效率不错。如果同时出现了Using where,表明索引被用来执行索引键值的查找;如果没有同时出现Using where表明索引用来读取数据而非执行查找动作。
索引覆盖有两种理解方式:(1)就是select的数据列,只用从索引中就能取得,不必读取数据行,Mqsql可以利用索引返回select列表中的字段,而不必根据索引再次读取数据文件,换句话说也就是查询列要被所建的索引列覆盖。(2)索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行,毕竟索引叶子节点存储了他们索引的数据;当然通过读取索引就可以得到想要的数据,那就不需要读取行了,一个索引包含了满足查询结果的数据就叫做覆盖索引。
(2)Using index condition:用了条件索引(索引下推)
(3)Using where:从索引查出来数据后继续使用where条件过滤。
(4)Using join buffer(Block Nested Loop):join的时候利用了join buffer(优化方法:去掉外连接,增大join buffer的大小)
(5)Using fileSort(重点优化):用了文件排序,俗称“文件排序”,排序的时候没有用到索引,在数据量大的时候几乎是“九死一生”,在order by 或者group by过程中,order by的字段不是索引字段,或者select查询字段存在不是索引字段,或者select 查询字段都是索引字段,但是order by的字段顺序和select的索引字段的顺序不一致,都会导致fileSort。
(6)Using temporary(重点优化):用了临时表保存中间结果,常见于order by和group by中(优化方法:增加条件以减少结果集、怎讲索引,总之就是:要么减少待排序的数量,要么提前排好序)
(7)Start temporary,End temporary:子查询的时候,可以优化成半连接,但是使用的是通过临时表来去重。
(8)FirstMatch(tb1_name):子查询的时候,可以优化成半连接,但是使用的是直接进行数据比较来去重。
(9)impossible where:表示where子句的值总是false,不能用来获取任何元素。
(10)select tables optimized away 在没有group by 子句的情况下,基于索引优化MIN/MAX操作或者对于MyISAM存储引擎优化Count(*)操作,不必等到执行阶段再进行计算,查询执行计划生成的阶段即完成优化。
(11)distinct:优化distinct,在找到第一匹配的元组后即停止找同样值的工作。

2、常见的慢sql优化手段:

(1)select * 语句减少使用,会增加很多不必要的消耗(cpu,io,内存,网络带宽等)可以在select语句后指明具体的字段名称,增加了使用覆盖索引的可能性;
(2)排序时注意是否能用到索引,确保order by和group by涉及的列上有索引,尽量减少排序和分组操作的数据量。
(3)使用like模糊查询的时候,尽量使用最左匹配模式,即like ‘abc%’,这样可以使用索引。
(4)避免对where语句中字段使用函数或运算,会导致索引失效(高版本的mysql数据库,函数也可以使用索引)
(5) 在多条件查询的时候,最好创建联合索引,因为多个单列索引在多条件查询时,一般只会生效一个索引,mysql会选择其中一个限制最为严格的作为索引。
(6)对于联合索引,要遵守最左前缀法则(使用联合索引的一部分字段时需要考虑最左原则,否则会失效,如果使用全部字段就不需要考虑了,不会失效)
(7)使用合理的分页方式,以提高分页的效率。
(8)使用limit限制返回的行数,如只需要一条数据使用limit 1;
(9)对大表进行分区,可根据时间、范围、哈希等方式分区,查询时只扫描相关分区,减少不必要的数据扫描。
(10)避免使用临时表
(11)优化联合查询,在联合查询中尽量能使用UNION ALL。UNION会去除重复的记录,需要额外的排序和去重操作,性能较差。UNION ALL直接合并结果集,不进行去重,性能更好。如果业务逻辑允许,邮箱使用UNION。
(12)拆分大字段,将包含大字段(如:BLOB,TEXT)的表进行拆分,将大字段放在单独的表中,已减少主表的存储开销和查询压力。
(13)读写分离,将读操作和写操作分离,通过主从复制实现读写分离,减少主库压力,提高读写性能。
(14)根据业务需求,从业务逻辑入手,优化查询需求和频率,避免不必要的频繁查询。

相关文章:

慢sql优化和Explain解析

要想程序跑的快,sql优化不可懈怠!今日来总结一下常用的慢sql的分析和优化的方法。 1、慢sql的执行分析: 大家都知道分析一个sql语句执行效率的方法是用explain关键词: 举例:sql:select * from test where bussiness_…...

ALIGN_ Tuning Multi-mode Token-level Prompt Alignment across Modalities

文章汇总 当前的问题 目前的工作集中于单模提示发现,即一种模态只有一个提示,这可能不足以代表一个类[17]。这个问题在多模态提示学习中更为严重,因为视觉和文本概念及其对齐都需要推断。此外,仅用全局特征来表示图像和标记是不…...

【Java SE】代码注释

代码注释 注释(comment)是用于说明解释程序的文字,注释的作用在于提高代码的阅读性(可读性)。Java中的注释类型包括3种,分别是: 单行注释多行注释文档注释 ❤️ 单行注释 基本格式&#xff…...

如何在算家云搭建Llama3-Factory(智能对话)

一、Llama3-Factory 简介 当地时间 4 月 18 日,Meta 在官网上宣布公布了旗下最新大模型 Llama 3。目前,Llama 3 已经开放了 80 亿(8B)和 700 亿(70B)两个小参数版本,上下文窗口为 8k。Llama3 是…...

操作数据表

创建表 创建表语法: CREATE TABLE table_name ( field1 datatype [COMMENT 注释内容], field2 datatype [COMMENT 注释内容], field3 datatype ); 注意: 1. 蓝色字体为关键字 2. CREATE TABLE 是创建数据表的固定关键字,表…...

C# 实现进程间通信的几种方式(完善)

目录 引言 一、基本概念 二、常见的IPC方法 1. 管道(Pipes) 2. 共享内存(Shared Memory) 3. 消息队列(Message Queues) 4. 套接字(Sockets) 5. 信号量(Semaphore…...

MySQL Workbench Data Import Wizard:list index out of range

MySQL Workbench的Data Import Wizard功能是用python实现的,MySQL Workbench自带了一个python,数据导入的时候出现错误提示 22:55:51 [ERR][ pymforms]: Unhandled exception in Python code: Traceback (most recent call last): File "D…...

微信支付宝小程序SEO优化的四大策略

在竞争激烈的小程序市场中,高搜索排名意味着更多的曝光机会和潜在用户。SEO即搜索引擎优化,对于小程序而言,主要指的是在微信小程序商店中提高搜索排名,从而增加曝光度和用户访问量。有助于小程序脱颖而出,提升品牌知名…...

AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion论文阅读笔记

AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 论文阅读笔记 这是ECCV2024的论文,作者单位是是港中文和上海AI Lab 文章提出了一个叫AutoDIR的方法,包括两个关键阶段,一个是BIQA,基于vision-language…...

SQLite 数据库设计最佳实践

SQLite特点 SQLite是一款功能强大的 轻量级嵌入式数据库 ,具有以下显著特点: 体积小 :最低配置仅需几百KB内存,适用于资源受限环境。 高性能 :访问速度快,运行效率高于许多开源数据库。 高度可移植 :兼容多种硬件和软件平台。 零配置 :无需复杂设置,开箱即用。 自给自…...

【论文精读】ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection

🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀论文精读_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 注:下文…...

Android 10.0 根据包名禁用某个app的home事件

1.前言 在10.0的系统rom定制化开发中,在某些app中,需要禁用home事件,在普通的app中又无法 禁用home事件,所以就需要从系统中来根据包名禁用home事件了,接下来分析下 系统中处理home事件的相关流程 2.根据包名禁用某个app的home事件的核心类 frameworks/base/services/c…...

Rust 文档生成与发布

目录 第三节 文档生成与发布 1. 使用 RustDoc 生成项目文档 1.1 RustDoc 的基本使用 1.2 文档注释的格式与实践 1.3 生成文档的其他选项 1.4 在 CI/CD 中生成文档 2. 发布到 crates.io 的步骤与注意事项 2.1 创建 crates.io 账户 2.2 配置 Cargo.toml 2.3 生成发布版…...

【C++动态规划】有效括号的嵌套深度

本文涉及知识点 C动态规划 LeetCode1111. 有效括号的嵌套深度 有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。 嵌套深度 depth 定义:即有效括号字符串嵌套的层…...

2024年优秀的天气预测API

准确、可操作的天气预报对于许多组织的成功至关重要。 事实上,在整个行业中,天气条件会直接影响日常运营,包括航运、按需、能源和供应链(仅举几例)。 以公用事业为例。根据麦肯锡的数据,在 1.4 年的时间里…...

Android和iOS有什么区别?

Android 和 iOS 有以下区别: 开发者与所属公司: Android:由谷歌公司开发以及开放手机联盟维护。它是基于 Linux 内核和其他开源软件的修改版本,代码开源程度较高,许多厂商都可以基于 Android 源代码进行深度定制和开发…...

NVR小程序接入平台/设备EasyNVR多个NVR同时管理多平台级联与上下级对接的高效应用

政务数据共享平台的建设正致力于消除“信息孤岛”现象,打破“数据烟囱”,实现国家、省、市及区县数据的全面对接与共享。省市平台的“级联对接”工作由多级平台共同构成,旨在满足跨部门、跨层级及跨省数据共享的需求,推动数据流通…...

Spring Cloud Sleuth(Micrometer Tracing +Zipkin)

分布式链路追踪 分布式链路追踪技术要解决的问题,分布式链路追踪(Distributed Tracing),就是将一次分布式请求还原成调用链路,进行日志记录,性能监控并将一次分布式请求的调用情况集中展示。比如各个服务节…...

人工智能:机遇与挑战

人工智能(AI)作为当今世界科技发展的前沿领域,正在以前所未有的速度和规模影响着我们的生活和工作方式。AI技术的应用前景广阔,从医疗健康到金融服务,从教育到交通,再到娱乐和家庭生活,AI正在逐…...

mac电脑设置crontab定时任务,以及遇到的问题解决办法

crontab常用命令 crontab -u user:用来设定某个用户的crontab服务; crontab file:file是命令文件的名字,表示将file做为crontab的任务列表文件并载入crontab。如果在命令行中没有指定这个文件,crontab命令将接受标准输入&#xf…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...

为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?

在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

IP如何挑?2025年海外专线IP如何购买?

你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)

题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...