13. MapReduce自定义OutputFormat
一. OutputFormat简介
OutputFormat是MapReduce输出的基类,所有MapReduce输出都实现了OutputFormat接口,它接收ReduceTask产生的数据,然后将结果按照指定格式输出。
在MapReduce中,如果不指定,默认使用的是TextOutputFormat。但是在一些特定的场景下,默认的TextOutputFormat不一定能满足我们的需求,因此可以自定义OutputFormat来实现个性化需求。
二. 需求
使用MapReduce对输入文件中的单词进行计数,单词"hello"的计数结果输出到hello.log中,非"hello"的单词的计数结果输出到non-hello.log。
要实现上面的输出需求,就需要自定义OutputFormat。
自定义OutputFormat的步骤:
- 自定义一个类继承FileOutputFormat。
- 自定义一个类继承RecordWriter,重写方法write()和close()。
代码实现
package mr;import org.apache.commons.io.IOUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;class MultiOuputFormat extends FileOutputFormat<Text, IntWritable> {@Overridepublic RecordWriter<Text, IntWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {Configuration configuration = job.getConfiguration();String outputPath = configuration.get(FileOutputFormat.OUTDIR);FileSystem fs = FileSystem.get(configuration);Path path1 = new Path(outputPath + "/hello.log");Path path2 = new Path(outputPath + "/non-hello.log");if (fs.exists(path1)) {fs.delete(path1, true);}if (fs.exists(path2)) {fs.delete(path2, true);}FSDataOutputStream out1 = fs.create(path1);FSDataOutputStream out2 = fs.create(path2);return new MyRecordWriter(out1, out2);}
}class MyRecordWriter extends RecordWriter<Text, IntWritable> {private FSDataOutputStream out1;private FSDataOutputStream out2;public MyRecordWriter(FSDataOutputStream out1, FSDataOutputStream out2) {super();this.out1 = out1;this.out2 = out2;}@Overridepublic void write(Text key, IntWritable value) throws IOException, InterruptedException {String outStr = key.toString() + "," + value.toString() + "\n";if (key.toString().contains("hello")) {out1.write(outStr.getBytes());} else {out2.write(outStr.getBytes());}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {IOUtils.close(out1);IOUtils.close(out2);}
}public class WordCountOutputFormat {static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overridepublic void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String[] words = value.toString().split(" ");for (String word: words) {context.write(new Text(word), new IntWritable(1));}}}static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {@Overridepublic void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();}context.write(key, new IntWritable(sum));}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(WordCountOutputFormat.class);job.setJobName("WordCount");// 设置输入,输出路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 设置Mapperjob.setMapperClass(WordCountOutputFormat.WordCountMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 设置Reducerjob.setReducerClass(WordCountOutputFormat.WordCountReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.setNumReduceTasks(1);job.setOutputFormatClass(MultiOuputFormat.class);boolean waitFor = job.waitForCompletion(true);System.exit(waitFor ? 0 : 1);}
}
运行结果
[root@hadoop1 ~]# yarn jar learn-1.0-SNAPSHOT.jar mr.WordCountOutputFormat /test/a.txt /output# 查看输入文件
[root@hadoop1 ~]# hdfs dfs -text /test/a.txt
hello world
name hello
world# 查看结果文件
[root@hadoop1 ~]# hdfs dfs -ls /output
Found 3 items
-rw-r--r-- 3 root supergroup 0 2024-10-29 21:52 /output/_SUCCESS
-rw-r--r-- 3 root supergroup 8 2024-10-29 21:52 /output/hello.log
-rw-r--r-- 3 root supergroup 15 2024-10-29 21:52 /output/non-hello.log
[root@hadoop1 ~]# hdfs dfs -text /output/hello.log
hello,2
[root@hadoop1 ~]# hdfs dfs -text /output/non-hello.log
name,1
world,2
相关文章:
13. MapReduce自定义OutputFormat
一. OutputFormat简介 OutputFormat是MapReduce输出的基类,所有MapReduce输出都实现了OutputFormat接口,它接收ReduceTask产生的数据,然后将结果按照指定格式输出。 在MapReduce中,如果不指定,默认使用的是TextOutpu…...

Javase——正则表达式
正则表达式的相关使用 public static void main(String[] args) {//校验QQ号 System.out.println("3602222222".matches("[1-9][0-9]{4,}"));// 校验18位身份证号 System.out.println("11050220240830901X".matches("^([0-9]){7,18}…...
云原生文件系统之JuiceFS
JuiceFS 是一个分布式文件系统,专门为云原生环境设计,支持大规模数据存储和处理,特别适用于处理对象存储和大数据应用。JuiceFS 将元数据和数据分离,元数据保存在数据库中,而文件数据则存储在对象存储中,提…...

C++:输入和输出
一 . DEV C的下载和安装 二 . 第一个C程序 三 . 输出流 四 . 初始的数据类型 3.1、整型变量 3.2、双精度浮点数变量 3.3、字符型变量 3.4、字符串变量 3.5、无符号整型变量 五、输入流...

vue的路由的两种模式 hash与history 详细讲解
文章目录 1. Hash 模式工作原理优点缺点使用示例 2. History 模式工作原理优点缺点服务器配置示例使用示例 总结 Vue Router 是 Vue.js 的官方路由管理器,它支持多种路由模式,其中最常用的两种是 hash 模式和 history 模式。下面我们详细讲解这两种模式的…...

【Linux操作系统】进程间通信之匿名管道与命名管道
目录 一、进程间通信的目的:二、进程间通信的种类三、什么是管道四、匿名管道(共同祖先的进程之间)1.匿名管道的使用2.匿名管道举例3.匿名管道的原理4.管道特点5.管道的读写规则1. 当管道内没有数据可读时2.当管道满的时候3.管道端被关闭4.数…...

慢sql优化和Explain解析
要想程序跑的快,sql优化不可懈怠!今日来总结一下常用的慢sql的分析和优化的方法。 1、慢sql的执行分析: 大家都知道分析一个sql语句执行效率的方法是用explain关键词: 举例:sql:select * from test where bussiness_…...

ALIGN_ Tuning Multi-mode Token-level Prompt Alignment across Modalities
文章汇总 当前的问题 目前的工作集中于单模提示发现,即一种模态只有一个提示,这可能不足以代表一个类[17]。这个问题在多模态提示学习中更为严重,因为视觉和文本概念及其对齐都需要推断。此外,仅用全局特征来表示图像和标记是不…...
【Java SE】代码注释
代码注释 注释(comment)是用于说明解释程序的文字,注释的作用在于提高代码的阅读性(可读性)。Java中的注释类型包括3种,分别是: 单行注释多行注释文档注释 ❤️ 单行注释 基本格式ÿ…...

如何在算家云搭建Llama3-Factory(智能对话)
一、Llama3-Factory 简介 当地时间 4 月 18 日,Meta 在官网上宣布公布了旗下最新大模型 Llama 3。目前,Llama 3 已经开放了 80 亿(8B)和 700 亿(70B)两个小参数版本,上下文窗口为 8k。Llama3 是…...

操作数据表
创建表 创建表语法: CREATE TABLE table_name ( field1 datatype [COMMENT 注释内容], field2 datatype [COMMENT 注释内容], field3 datatype ); 注意: 1. 蓝色字体为关键字 2. CREATE TABLE 是创建数据表的固定关键字,表…...
C# 实现进程间通信的几种方式(完善)
目录 引言 一、基本概念 二、常见的IPC方法 1. 管道(Pipes) 2. 共享内存(Shared Memory) 3. 消息队列(Message Queues) 4. 套接字(Sockets) 5. 信号量(Semaphore…...
MySQL Workbench Data Import Wizard:list index out of range
MySQL Workbench的Data Import Wizard功能是用python实现的,MySQL Workbench自带了一个python,数据导入的时候出现错误提示 22:55:51 [ERR][ pymforms]: Unhandled exception in Python code: Traceback (most recent call last): File "D…...

微信支付宝小程序SEO优化的四大策略
在竞争激烈的小程序市场中,高搜索排名意味着更多的曝光机会和潜在用户。SEO即搜索引擎优化,对于小程序而言,主要指的是在微信小程序商店中提高搜索排名,从而增加曝光度和用户访问量。有助于小程序脱颖而出,提升品牌知名…...

AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion论文阅读笔记
AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 论文阅读笔记 这是ECCV2024的论文,作者单位是是港中文和上海AI Lab 文章提出了一个叫AutoDIR的方法,包括两个关键阶段,一个是BIQA,基于vision-language…...
SQLite 数据库设计最佳实践
SQLite特点 SQLite是一款功能强大的 轻量级嵌入式数据库 ,具有以下显著特点: 体积小 :最低配置仅需几百KB内存,适用于资源受限环境。 高性能 :访问速度快,运行效率高于许多开源数据库。 高度可移植 :兼容多种硬件和软件平台。 零配置 :无需复杂设置,开箱即用。 自给自…...

【论文精读】ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection
🌈 个人主页:十二月的猫-CSDN博客 🔥 系列专栏: 🏀论文精读_十二月的猫的博客-CSDN博客 💪🏻 十二月的寒冬阻挡不了春天的脚步,十二点的黑夜遮蔽不住黎明的曙光 注:下文…...
Android 10.0 根据包名禁用某个app的home事件
1.前言 在10.0的系统rom定制化开发中,在某些app中,需要禁用home事件,在普通的app中又无法 禁用home事件,所以就需要从系统中来根据包名禁用home事件了,接下来分析下 系统中处理home事件的相关流程 2.根据包名禁用某个app的home事件的核心类 frameworks/base/services/c…...
Rust 文档生成与发布
目录 第三节 文档生成与发布 1. 使用 RustDoc 生成项目文档 1.1 RustDoc 的基本使用 1.2 文档注释的格式与实践 1.3 生成文档的其他选项 1.4 在 CI/CD 中生成文档 2. 发布到 crates.io 的步骤与注意事项 2.1 创建 crates.io 账户 2.2 配置 Cargo.toml 2.3 生成发布版…...

【C++动态规划】有效括号的嵌套深度
本文涉及知识点 C动态规划 LeetCode1111. 有效括号的嵌套深度 有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。 嵌套深度 depth 定义:即有效括号字符串嵌套的层…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...