当前位置: 首页 > news >正文

13. MapReduce自定义OutputFormat

一. OutputFormat简介

OutputFormat是MapReduce输出的基类,所有MapReduce输出都实现了OutputFormat接口,它接收ReduceTask产生的数据,然后将结果按照指定格式输出。

在MapReduce中,如果不指定,默认使用的是TextOutputFormat。但是在一些特定的场景下,默认的TextOutputFormat不一定能满足我们的需求,因此可以自定义OutputFormat来实现个性化需求。

二. 需求

使用MapReduce对输入文件中的单词进行计数,单词"hello"的计数结果输出到hello.log中,非"hello"的单词的计数结果输出到non-hello.log。

要实现上面的输出需求,就需要自定义OutputFormat。

自定义OutputFormat的步骤:

  1. 自定义一个类继承FileOutputFormat。
  2. 自定义一个类继承RecordWriter,重写方法write()和close()。

代码实现

package mr;import org.apache.commons.io.IOUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import java.io.IOException;class MultiOuputFormat extends FileOutputFormat<Text, IntWritable> {@Overridepublic RecordWriter<Text, IntWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException {Configuration configuration = job.getConfiguration();String outputPath = configuration.get(FileOutputFormat.OUTDIR);FileSystem fs = FileSystem.get(configuration);Path path1 = new Path(outputPath + "/hello.log");Path path2 = new Path(outputPath + "/non-hello.log");if (fs.exists(path1)) {fs.delete(path1, true);}if (fs.exists(path2)) {fs.delete(path2, true);}FSDataOutputStream out1 = fs.create(path1);FSDataOutputStream out2 = fs.create(path2);return new MyRecordWriter(out1, out2);}
}class MyRecordWriter extends RecordWriter<Text, IntWritable> {private FSDataOutputStream out1;private FSDataOutputStream out2;public MyRecordWriter(FSDataOutputStream out1, FSDataOutputStream out2) {super();this.out1 = out1;this.out2 = out2;}@Overridepublic void write(Text key, IntWritable value) throws IOException, InterruptedException {String outStr = key.toString() + "," + value.toString() + "\n";if (key.toString().contains("hello")) {out1.write(outStr.getBytes());} else {out2.write(outStr.getBytes());}}@Overridepublic void close(TaskAttemptContext context) throws IOException, InterruptedException {IOUtils.close(out1);IOUtils.close(out2);}
}public class WordCountOutputFormat {static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {@Overridepublic void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String[] words = value.toString().split(" ");for (String word: words) {context.write(new Text(word), new IntWritable(1));}}}static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {@Overridepublic void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {int sum = 0;for (IntWritable val : values) {sum += val.get();}context.write(key, new IntWritable(sum));}}public static void main(String[] args) throws Exception {Configuration conf = new Configuration();Job job = Job.getInstance(conf);job.setJarByClass(WordCountOutputFormat.class);job.setJobName("WordCount");// 设置输入,输出路径FileInputFormat.setInputPaths(job, new Path(args[0]));FileOutputFormat.setOutputPath(job, new Path(args[1]));// 设置Mapperjob.setMapperClass(WordCountOutputFormat.WordCountMapper.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(IntWritable.class);// 设置Reducerjob.setReducerClass(WordCountOutputFormat.WordCountReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);job.setNumReduceTasks(1);job.setOutputFormatClass(MultiOuputFormat.class);boolean waitFor = job.waitForCompletion(true);System.exit(waitFor ? 0 : 1);}
}

运行结果

[root@hadoop1 ~]# yarn jar learn-1.0-SNAPSHOT.jar  mr.WordCountOutputFormat  /test/a.txt  /output# 查看输入文件
[root@hadoop1 ~]# hdfs dfs -text /test/a.txt
hello world
name hello
world# 查看结果文件
[root@hadoop1 ~]# hdfs dfs -ls /output
Found 3 items
-rw-r--r--   3 root supergroup          0 2024-10-29 21:52 /output/_SUCCESS
-rw-r--r--   3 root supergroup          8 2024-10-29 21:52 /output/hello.log
-rw-r--r--   3 root supergroup         15 2024-10-29 21:52 /output/non-hello.log
[root@hadoop1 ~]# hdfs dfs -text /output/hello.log
hello,2
[root@hadoop1 ~]# hdfs dfs -text /output/non-hello.log
name,1
world,2

相关文章:

13. MapReduce自定义OutputFormat

一. OutputFormat简介 OutputFormat是MapReduce输出的基类&#xff0c;所有MapReduce输出都实现了OutputFormat接口&#xff0c;它接收ReduceTask产生的数据&#xff0c;然后将结果按照指定格式输出。 在MapReduce中&#xff0c;如果不指定&#xff0c;默认使用的是TextOutpu…...

Javase——正则表达式

正则表达式的相关使用 public static void main(String[] args) {//校验QQ号 System.out.println("3602222222".matches("[1-9][0-9]{4,}"));// 校验18位身份证号 System.out.println("11050220240830901X".matches("^([0-9]){7,18}…...

云原生文件系统之JuiceFS

JuiceFS 是一个分布式文件系统&#xff0c;专门为云原生环境设计&#xff0c;支持大规模数据存储和处理&#xff0c;特别适用于处理对象存储和大数据应用。JuiceFS 将元数据和数据分离&#xff0c;元数据保存在数据库中&#xff0c;而文件数据则存储在对象存储中&#xff0c;提…...

C++:输入和输出

一 . DEV C的下载和安装 二 . 第一个C程序 三 . 输出流 四 . 初始的数据类型 3.1、整型变量 3.2、双精度浮点数变量 3.3、字符型变量 3.4、字符串变量 3.5、无符号整型变量 五、输入流...

vue的路由的两种模式 hash与history 详细讲解

文章目录 1. Hash 模式工作原理优点缺点使用示例 2. History 模式工作原理优点缺点服务器配置示例使用示例 总结 Vue Router 是 Vue.js 的官方路由管理器&#xff0c;它支持多种路由模式&#xff0c;其中最常用的两种是 hash 模式和 history 模式。下面我们详细讲解这两种模式的…...

【Linux操作系统】进程间通信之匿名管道与命名管道

目录 一、进程间通信的目的&#xff1a;二、进程间通信的种类三、什么是管道四、匿名管道&#xff08;共同祖先的进程之间&#xff09;1.匿名管道的使用2.匿名管道举例3.匿名管道的原理4.管道特点5.管道的读写规则1. 当管道内没有数据可读时2.当管道满的时候3.管道端被关闭4.数…...

慢sql优化和Explain解析

要想程序跑的快&#xff0c;sql优化不可懈怠&#xff01;今日来总结一下常用的慢sql的分析和优化的方法。 1、慢sql的执行分析&#xff1a; 大家都知道分析一个sql语句执行效率的方法是用explain关键词&#xff1a; 举例&#xff1a;sql:select * from test where bussiness_…...

ALIGN_ Tuning Multi-mode Token-level Prompt Alignment across Modalities

文章汇总 当前的问题 目前的工作集中于单模提示发现&#xff0c;即一种模态只有一个提示&#xff0c;这可能不足以代表一个类[17]。这个问题在多模态提示学习中更为严重&#xff0c;因为视觉和文本概念及其对齐都需要推断。此外&#xff0c;仅用全局特征来表示图像和标记是不…...

【Java SE】代码注释

代码注释 注释&#xff08;comment&#xff09;是用于说明解释程序的文字&#xff0c;注释的作用在于提高代码的阅读性&#xff08;可读性&#xff09;。Java中的注释类型包括3种&#xff0c;分别是&#xff1a; 单行注释多行注释文档注释 ❤️ 单行注释 基本格式&#xff…...

如何在算家云搭建Llama3-Factory(智能对话)

一、Llama3-Factory 简介 当地时间 4 月 18 日&#xff0c;Meta 在官网上宣布公布了旗下最新大模型 Llama 3。目前&#xff0c;Llama 3 已经开放了 80 亿&#xff08;8B&#xff09;和 700 亿&#xff08;70B&#xff09;两个小参数版本&#xff0c;上下文窗口为 8k。Llama3 是…...

操作数据表

创建表 创建表语法&#xff1a; CREATE TABLE table_name ( field1 datatype [COMMENT 注释内容], field2 datatype [COMMENT 注释内容], field3 datatype ); 注意&#xff1a; 1. 蓝色字体为关键字 2. CREATE TABLE 是创建数据表的固定关键字&#xff0c;表…...

C# 实现进程间通信的几种方式(完善)

目录 引言 一、基本概念 二、常见的IPC方法 1. 管道&#xff08;Pipes&#xff09; 2. 共享内存&#xff08;Shared Memory&#xff09; 3. 消息队列&#xff08;Message Queues&#xff09; 4. 套接字&#xff08;Sockets&#xff09; 5. 信号量&#xff08;Semaphore…...

MySQL Workbench Data Import Wizard:list index out of range

MySQL Workbench的Data Import Wizard功能是用python实现的&#xff0c;MySQL Workbench自带了一个python&#xff0c;数据导入的时候出现错误提示 22:55:51 [ERR][ pymforms]: Unhandled exception in Python code: Traceback (most recent call last): File "D…...

微信支付宝小程序SEO优化的四大策略

在竞争激烈的小程序市场中&#xff0c;高搜索排名意味着更多的曝光机会和潜在用户。SEO即搜索引擎优化&#xff0c;对于小程序而言&#xff0c;主要指的是在微信小程序商店中提高搜索排名&#xff0c;从而增加曝光度和用户访问量。有助于小程序脱颖而出&#xff0c;提升品牌知名…...

AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion论文阅读笔记

AutoDIR: Automatic All-in-One Image Restoration with Latent Diffusion 论文阅读笔记 这是ECCV2024的论文&#xff0c;作者单位是是港中文和上海AI Lab 文章提出了一个叫AutoDIR的方法&#xff0c;包括两个关键阶段&#xff0c;一个是BIQA&#xff0c;基于vision-language…...

SQLite 数据库设计最佳实践

SQLite特点 SQLite是一款功能强大的 轻量级嵌入式数据库 ,具有以下显著特点: 体积小 :最低配置仅需几百KB内存,适用于资源受限环境。 高性能 :访问速度快,运行效率高于许多开源数据库。 高度可移植 :兼容多种硬件和软件平台。 零配置 :无需复杂设置,开箱即用。 自给自…...

【论文精读】ID-like Prompt Learning for Few-Shot Out-of-Distribution Detection

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;论文精读_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 注&#xff1a;下文…...

Android 10.0 根据包名禁用某个app的home事件

1.前言 在10.0的系统rom定制化开发中,在某些app中,需要禁用home事件,在普通的app中又无法 禁用home事件,所以就需要从系统中来根据包名禁用home事件了,接下来分析下 系统中处理home事件的相关流程 2.根据包名禁用某个app的home事件的核心类 frameworks/base/services/c…...

Rust 文档生成与发布

目录 第三节 文档生成与发布 1. 使用 RustDoc 生成项目文档 1.1 RustDoc 的基本使用 1.2 文档注释的格式与实践 1.3 生成文档的其他选项 1.4 在 CI/CD 中生成文档 2. 发布到 crates.io 的步骤与注意事项 2.1 创建 crates.io 账户 2.2 配置 Cargo.toml 2.3 生成发布版…...

【C++动态规划】有效括号的嵌套深度

本文涉及知识点 C动态规划 LeetCode1111. 有效括号的嵌套深度 有效括号字符串 定义&#xff1a;对于每个左括号&#xff0c;都能找到与之对应的右括号&#xff0c;反之亦然。详情参见题末「有效括号字符串」部分。 嵌套深度 depth 定义&#xff1a;即有效括号字符串嵌套的层…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Springboot社区养老保险系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;社区养老保险系统小程序被用户普遍使用&#xff0c;为方…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...