当前位置: 首页 > news >正文

算法:排序

排序算法

  • 1. 简单排序
    • 1.1 直接插入排序
    • 1.2 冒泡排序
    • 1.3 简单选择排序
  • 2. 希尔排序
  • 3. 快速排序
  • 4. 堆排序
  • 5. 归并排序

将文件的内容按照某种规则进行排列。

排序算法的稳定判定:若在待排序的一个序列中, R i R_i Ri R j R_j Rj的关键码相同,即 k i = k j k_i=k_j ki=kj,且在排序前 R i R_i Ri领先于 R j R_j Rj,那么当排序后,如果 R i R_i Ri R j R_j Rj的相对次序保持不变, R i R_i Ri仍领先于 R j R_j Rj,则称此类排序方法为稳定的。若可能出现 R j R_j Rj领先于 R i R_i Ri的情况,则称此列排序是不稳定的。

排序可分为内部排序和外部排序,通过是否全部在内存中排序进行判定。

排序完成两个操作:

  1. 比较两个关键码的大小;
  2. 将记录从一个位置移动到另一个为止。

1. 简单排序

1.1 直接插入排序

将某个数据插入已经排好的队列中。

void insertSort(int data[], int n)
{int i, j;int temp;for (i = 1; i < n; i++){if (data[i] < data[i - 1]) {temp = data[i]; data[i] = data[i - 1];for (j = i - 2; j >= 0 && data[j] > temp; j--) data[j + 1] = data[j];data[j+1] = temp;}}
}

运行结果:

int array[8] = {12, 18184, 45, 78, 45, 555, 47, 36};insertSort(array, 8);for (int i = 0; i < 8; i++)
{printf("%d\n", array[i]);
}

在这里插入图片描述
直接插入排序的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。排序过程中仅需要一个元素的辅助空间,空间复杂度为 O ( 1 ) O(1) O(1)。直接插入排序是一种稳定的排序方法。

1.2 冒泡排序

顾名思义,冒泡法就是像气泡上浮一样把数据逐渐传递上去。

void bubbleSort(int data[], int n) 
{int i, j, tag = 1;   //tag表示排序过程中是否交换过元素值int temp;for (i = 1; tag && i < n; i++){tag = 0;for (j = 0; j < n - i; j++){if (data[j]>data[j+1]){temp = data[j];data[j] = data[j+1];data[j + 1] = temp;tag = 1;}}}
}
int array[8] = {12, 18184, 45, 78, 45, 555, 47, 36};
//insertSort(array, 8);
bubbleSort(array, 8);for (int i = 0; i < 8; i++)
{printf("%d\n", array[i]);
}

在这里插入图片描述
冒泡排序的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。排序过程中仅需要一个元素的辅助空间,空间复杂度为 O ( 1 ) O(1) O(1)。冒泡排序是一种稳定的排序方法。

1.3 简单选择排序

逐步找出最小的元素,依次放置。

void selectSort(int data[], int n)
{int i, j, k;int temp;for (i = 0;  i < n-1; i++){k = i;for ( j = i+1; j < n; j++){if (data[j] < data[k]) k = j;}if (k!=i){temp = data[i];data[i] = data[k];data[k] = temp;}}
}

算法结果:

int array[8] = {12, 18184, 45, 78, 45, 555, 47, 36};//insertSort(array, 8);
//bubbleSort(array, 8);
selectSort(array, 8);for (int i = 0; i < 8; i++)
{printf("%d\n", array[i]);
}

在这里插入图片描述
简单选择排序的时间复杂度为 O ( n 2 ) O(n^2) O(n2)。排序过程中仅需要一个元素的辅助空间,空间复杂度为 O ( 1 ) O(1) O(1)。简单选择排序是一种不稳定的排序方法。

2. 希尔排序

希尔排序又称为“缩小增量排序”,是对直接插入排序方法的改进。
希尔排序的基本思想是:先将整个待排记录序列分割成若干子序列,然后分别进行直接插入排序,待整个序列中的记录基本有序时,再对全体记录进行一次直接插入排序。具体做法是先取一个小于n的整数 d 1 d_1 d1作为第一个增量,将所有相距为 d 1 d_1 d1的记录放在同一个组中,从而把文件的全部记录分成 d 1 d_1 d1组,在各组内进行直接插入排序;然后取第二个增量 d 2 ( d 2 < d 1 ) d_2(d_2<d_1) d2(d2<d1),重复上述分组和排序工作,依此类推,直至所取的增量 d i = 1 ( d i < d i − 1 < . . . < d 2 < d 1 ) d_i=1(d_i<d_{i-1}<...<d_2<d_1) di=1(di<di1<...<d2<d1),即所有记录放在同一组进行直接插入排序,将所有记录排列有序为止。
在这里插入图片描述

/*************************************************Function:shellSort,希尔排序方法Description: 整数序列排序,从小到大Input:    data[]   排序数组n        数组大小delta[]  长度为m且递减有序的增量序列最后一个元素为1m   delta[]数组大小Output:输出转换结果Return: 0
*************************************************/
void shellSort(int data[], int n, int delta[], int m)
{int k, i, dk, j; int temp;for ( i = 0; i < m; i++){dk = delta[i];for (k = dk; k < n; ++k){if (data[k]<data[k-dk]){temp = data[k];for (j = k - dk; j>0&&temp<data[j]; j-=dk){data[j + dk] = data[j];}data[j + dk] = temp;}}}
}

希尔排序的时间复杂度为 O ( N 1.3 ) O(N^{1.3}) O(N1.3).希尔排序是不稳定的排序方法。

3. 快速排序

快速排序

一趟快速排序的过程称为一次划分,具体做法是:附设两个元素位置指示变量 i i i j j j,它们的初值分别指向待排序列的第一个记录和最后一个记录。设枢轴记录(通常是第一个记录)的关键码为 pivot,则首先从j所给位置起向前搜索,找到第一个关键码小于 pivot 的记录时停止,然后从i所给位置起向后搜索,找到第一个关键码大于pivot 的记录时停止,此时交换j所给位置和i所给位置的元素,重复该过程直至i与i相等为止,完成一趟划分。

//用data[low]的值作为枢轴元素pivot进行划分
//不断劈成两半之后排序
int partition(int data[], int low, int high)
{int i, j;int pivot;while (i<j){while (i<j&&data[j]>=pivot){j--;}data[i] = data[j];while (i < j && data[i] <= pivot){i++;}data[j] = data[i];}data[i] = pivot;return i;
}/*************************************************Function:quickSort,快速排序方法Description: 整数序列排序,从小到大Input:    data[]   排序数组low  数组最低位high 数组最高位Output:输出转换结果Return: 0
*************************************************/
void quickSort(int data[], int low, int high)
{if (low < high){int loc = partition(data, low, high);quickSort(data,low,loc-1);quickSort(data,  loc + 1, high);}
}

4. 堆排序

5. 归并排序

相关文章:

算法:排序

排序算法 1. 简单排序1.1 直接插入排序1.2 冒泡排序1.3 简单选择排序 2. 希尔排序3. 快速排序4. 堆排序5. 归并排序 将文件的内容按照某种规则进行排列。 排序算法的稳定判定&#xff1a;若在待排序的一个序列中&#xff0c; R i R_i Ri​和 R j R_j Rj​的关键码相同&#xf…...

MyBatis-Plus 更新对象时如何将字段值更新为 null

MyBatis-Plus 是一个 MyBatis 的增强工具&#xff0c;在简化开发、提高效率方面表现非常出色。然而&#xff0c;在使用 MyBatis-Plus 更新对象时&#xff0c;默认情况下是不会将字段值更新为 null 的。这是因为 MyBatis-Plus 使用了非空字段策略&#xff08;FieldStrategy&…...

Unreal5从入门到精通之如何在VR中使用3DUI

文章目录 前言创建3DUI1.新建控件蓝图2.添加控件到画布上3.新建Actor蓝图MyUIActor4.添加控件组件Widget5.设置控件类和画布大小6.创建MyUIActor实例到场景中3DUI和VR射线交互1.添加按钮的点击事件2.设置MyUIActor碰撞响应3.VRPawn添加控件交互组件4.添加手柄Trigger点击事件绑…...

ViSual studio如何安装 并使用GeographicLib

在C的 Boost.Geometry、GDAL/OGR 和 GeographicLib。这些库都可以用于计算两个经纬度点之间的地面距离。 . Boost.Geometry 描述&#xff1a;Boost库的一部分&#xff0c;提供了几何计算功能&#xff0c;包括计算两点之间的地面距离。 优势&#xff1a;轻量级、易于集成到C项…...

Java程序设计:spring boot(11)——分布式缓存 Ehcache 整合

目录 1 Spring Cache 相关注解说明 1.1 CacheConfig 1.2 Cacheable 1.3 CachePut 1.4 CacheEvict 1.5 Caching 2 环境配置 2.1 pom.xml 依赖添加 2.2 ehcahe.xml ⽂件添加 2.3 application.yml 缓存配置 2.4 启动缓存 2.5 JavaBean 对象实现序列化 3 缓存实现 3.…...

豆包,攻克数字是个什么工具?《GKData-挖掘数据的无限可能》(数据爬虫采集工具)

豆包&#xff0c;攻克数字是个什么工具&#xff1f; “攻克数字” 指的是 “攻克数字&#xff08;GKData&#xff09;” 这样一款工具。是一款针对网页、APP中数据自动解析转表存入数据库的软件&#xff0c;为数据工作者而生。它是一个不会编程也能用的可视化数据解析为标准二…...

说一说QWidget

目录 关于QWidget 作为界面组件时&#xff0c;你需要有印象的 1. 控制属性 2. 组件状态与交互属性 3. 外观和样式属性 4. 布局与子组件管理属性 5. 图标和光标属性 6. 大小策略属性 作为单独的窗体的属性 写Qt快两年了&#xff0c;也写过一些规模偏大的软件&#xff0c…...

Web3.0技术入门

Web3.0技术入门是一个涉及多个方面和领域的复杂过程&#xff0c;以下是一些关键的步骤和要点&#xff0c;帮助您初步了解并掌握Web3.0技术。 一、了解Web3.0的基本概念 Web3.0也被称为下一代互联网&#xff0c;它是对当前互联网&#xff08;Web2.0&#xff09;的演进和升级。…...

spygalss cdc 检测的bug(二)

当allow_qualifier_merge设置为strict的时候&#xff0c;sg是要检查门的极性的。 如果qualifier和src经过与门汇聚&#xff0c;在同另一个src1信号或门汇聚&#xff0c;sg是报unsync的。 假设当qualifier为0时&#xff0c;0&&src||src1src1&#xff0c;src1无法被gat…...

集合论(ZFC)之 选择公理(Axiom of Choice)注解

直观感受&#xff08;Intuition&#xff09; 集合论&#xff08;ZFC&#xff09;中的 "C" 指的是选择公理&#xff08;Axiom of Choice&#xff09;中的"choice"。简单来说&#xff0c;对于任一非空集合 S&#xff0c;那么存在一个函数 f&#xff0c;选择出…...

JS:字符串操作

目录 1、 字符串分割 1、 字符串分割 var str "123,456,789"; console.log(str.split(,)); // ["123", "456", "789"]...

.NET 一款二进制文件转换Shellcode的工具

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等&#xff08;包括但不限于&#xff09;进行检测或维护参考&#xff0c;未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…...

【CSS】——基础入门常见操作

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;CSS引入 二&#xff1a;CSS对元素进行美化 1&#xff1a;style修饰 2&#xff1a;选…...

LuaJIT源码分析(五)词法分析

LuaJIT源码分析&#xff08;五&#xff09;词法分析 lua虽然是脚本语言&#xff0c;但在执行时&#xff0c;还是先将脚本编译成字节码&#xff0c;然后再由虚拟机解释执行。在编译脚本时&#xff0c;首先需要对源代码进行词法分析&#xff0c;把源代码分解为token流。lua的toke…...

005 匿名信

005 匿名信 题目描述 电视剧《分界线》里面有一个片段&#xff0c;男主为了向警察透露案件细节&#xff0c;且不暴露自己&#xff0c;于是将报刊上的字剪下来&#xff0c;剪拼成一封匿名信。现在有一名举报人&#xff0c;希望借鉴这种方式&#xff0c;使用英文报刊完成举报操…...

聊聊Web3D 发展趋势

随着 Web 技术的不断演进&#xff0c;Web3D 正逐渐成为各行业数字化的重要方向。Web3D 是指在网页中展示 3D 内容的技术集合。近年来&#xff0c;由于 WebGL、WebGPU 等技术的发展&#xff0c;3D 内容已经能够直接在浏览器中渲染&#xff0c;为用户提供更加沉浸、互动的体验。以…...

【数据结构与算法】LeetCode: 贪心算法

文章目录 LeetCode&#xff1a; 贪心算法买卖股票的最佳时机 &#xff08;Hot100&#xff09;买卖股票的最佳时机 II跳跃游戏 &#xff08;Hot100&#xff09;跳跃游戏 II&#xff08;Hot100&#xff09;划分字母区间 &#xff08;Hot100&#xff09;分发饼干K次取反后最大化的…...

Date 日期类的实现(c++)

本文用c实现日期类 将会实现以下函数 bool operator<(const Date& d);bool operator<(const Date& d);bool operator>(const Date& d);bool operator>(const Date& d);bool operator(const Date& d);bool operator!(const Date& d);Date&…...

智能家居10G雷达感应开关模块,飞睿智能uA级别低功耗、超高灵敏度,瞬间响应快

在当今科技飞速发展的时代&#xff0c;智能家居已经逐渐成为人们生活中不可或缺的一部分。从智能灯光控制到智能家电的联动&#xff0c;每一个细节都在为我们的生活带来便利和舒适。而在众多智能家居产品中&#xff0c;10G 雷达感应开关模块以其独特的优势&#xff0c;正逐渐成…...

头歌——人工智能(机器学习 --- 决策树2)

文章目录 第5关&#xff1a;基尼系数代码 第6关&#xff1a;预剪枝与后剪枝代码 第7关&#xff1a;鸢尾花识别代码 第5关&#xff1a;基尼系数 基尼系数 在ID3算法中我们使用了信息增益来选择特征&#xff0c;信息增益大的优先选择。在C4.5算法中&#xff0c;采用了信息增益率…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...