当前位置: 首页 > news >正文

集合论(ZFC)之 选择公理(Axiom of Choice)注解

直观感受(Intuition)

        集合论(ZFC)中的 "C" 指的是选择公理(Axiom of Choice)中的"choice"。简单来说,对于任一非空集合 S,那么存在一个函数 f,选择出其中的元素 s ∈ S,即 s = f(S) ∈ S。

形式化(Formalization)  

        正式定义有,对于任一索引非空集合族(indexed family of non-empty set),记,{Sᵢ: i ∈ I},其中,i for index。那么,存在一个索引集合,记,{xᵢ: i ∈ I},使得 ∀i∈I. (xᵢ ∈ Sᵢ)

        也就是说,存在一个选择函数 choice,使得,

∀i∈I. (choice( Sᵢ ∈ {Sᵢ: i ∈ I} ) ∈ Sᵢ )

其中,choice: {Sᵢ: i ∈ I} → Sᵢ

xᵢ = choice(Sᵢ)

注解(Annotation)

        初步看来,其实挺合理的,就是,一个非空的集合,意味着,该集合肯定包含了某些元素,又,既然包含了一些元素,那么,肯定能选取出一个元素来。

        可是,这里忽略了一点,就是,存在(existence)与能选出(choice)是两个区别的概念。而选择公理(Axiom of Choice)则规定了,只要是存在的(non-empty),那么,就能选出(choice),也就是,将这两概念等价起来了。

        这样,通过选择公理(AC),可以证明一些不可构建(non-constructable)的存在(existence)。例如,最为形象的是,Banach–Tarski 悖论。由此,也引申出不可测量集合(non-measurable sets)的概念。

        另外,选择公理(AC)隐含了(implies)排中律(Law of Excluded Middle),即,

AC  P∨¬P ≡ True

排中律,说的是,对于任一命题P,命题P为真,或∨,其反命题¬P为真。这里就产生了个有意思的逻辑。

        对于命题连接符,或∨,来说,其输出的值,由其输入决定,即,对于A∨B来说,A、B中,有一个为真(True),那么,或∨的输出为真(True)。这里有明确的输入,产生明确的输出。即,需要证明A是真,或者,B是真,才能得出, A∨B 是真。

        而对于排中律来说,不需要证明,P、¬P哪个是真,就能得出, P∨¬P 是真的。反过来说,当有 P∨¬P 为真,那么,通过 选择公理(AC),就能选择出其中为真的命题,是P,或则是¬P。即,

choice(P∨¬P) ∈ P∨¬P

        这里,合理解析为,如果P是真,那么¬P肯定不为真;反之亦然。也就是说,对于命题P来说,不管是否能证明,命题P的真值只有真(True)与假(False)。就相当于,只要是非空集合(P∨¬P),那肯定存在一个元素,无论是 或 ¬P ,那么,该元素就是 choice(P∨¬P) ,使得(P∨¬P)非空,即 (P∨¬P)恒为真。即,通过,choice(P∨¬P) ,证明,P∨¬P ≡ True

相关文章:

集合论(ZFC)之 选择公理(Axiom of Choice)注解

直观感受(Intuition) 集合论(ZFC)中的 "C" 指的是选择公理(Axiom of Choice)中的"choice"。简单来说,对于任一非空集合 S,那么存在一个函数 f,选择出…...

JS:字符串操作

目录 1、 字符串分割 1、 字符串分割 var str "123,456,789"; console.log(str.split(,)); // ["123", "456", "789"]...

.NET 一款二进制文件转换Shellcode的工具

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…...

【CSS】——基础入门常见操作

阿华代码,不是逆风,就是我疯 你们的点赞收藏是我前进最大的动力!! 希望本文内容能够帮助到你!! 目录 一:CSS引入 二:CSS对元素进行美化 1:style修饰 2:选…...

LuaJIT源码分析(五)词法分析

LuaJIT源码分析(五)词法分析 lua虽然是脚本语言,但在执行时,还是先将脚本编译成字节码,然后再由虚拟机解释执行。在编译脚本时,首先需要对源代码进行词法分析,把源代码分解为token流。lua的toke…...

005 匿名信

005 匿名信 题目描述 电视剧《分界线》里面有一个片段,男主为了向警察透露案件细节,且不暴露自己,于是将报刊上的字剪下来,剪拼成一封匿名信。现在有一名举报人,希望借鉴这种方式,使用英文报刊完成举报操…...

聊聊Web3D 发展趋势

随着 Web 技术的不断演进,Web3D 正逐渐成为各行业数字化的重要方向。Web3D 是指在网页中展示 3D 内容的技术集合。近年来,由于 WebGL、WebGPU 等技术的发展,3D 内容已经能够直接在浏览器中渲染,为用户提供更加沉浸、互动的体验。以…...

【数据结构与算法】LeetCode: 贪心算法

文章目录 LeetCode: 贪心算法买卖股票的最佳时机 (Hot100)买卖股票的最佳时机 II跳跃游戏 (Hot100)跳跃游戏 II(Hot100)划分字母区间 (Hot100)分发饼干K次取反后最大化的…...

Date 日期类的实现(c++)

本文用c实现日期类 将会实现以下函数 bool operator<(const Date& d);bool operator<(const Date& d);bool operator>(const Date& d);bool operator>(const Date& d);bool operator(const Date& d);bool operator!(const Date& d);Date&…...

智能家居10G雷达感应开关模块,飞睿智能uA级别低功耗、超高灵敏度,瞬间响应快

在当今科技飞速发展的时代&#xff0c;智能家居已经逐渐成为人们生活中不可或缺的一部分。从智能灯光控制到智能家电的联动&#xff0c;每一个细节都在为我们的生活带来便利和舒适。而在众多智能家居产品中&#xff0c;10G 雷达感应开关模块以其独特的优势&#xff0c;正逐渐成…...

头歌——人工智能(机器学习 --- 决策树2)

文章目录 第5关&#xff1a;基尼系数代码 第6关&#xff1a;预剪枝与后剪枝代码 第7关&#xff1a;鸢尾花识别代码 第5关&#xff1a;基尼系数 基尼系数 在ID3算法中我们使用了信息增益来选择特征&#xff0c;信息增益大的优先选择。在C4.5算法中&#xff0c;采用了信息增益率…...

一七一、React性能优化方式

在 React 中进行性能优化可以通过多种手段来减少渲染次数、优化渲染效率并减少内存消耗。以下是常见的性能优化方法及示例&#xff1a; 1. shouldComponentUpdate shouldComponentUpdate 是类组件中的生命周期方法&#xff0c;它可以让组件在判断是否需要重新渲染时&#xff…...

编写dockerfile生成镜像,并且构建容器运行

编写dockerfile生成镜像&#xff0c;并且构建容器运行 目录 编写dockerfile生成镜像&#xff0c;并且构建容器运行 概述 一、dockerfile文件详解 Dockerfile的基本结构 Dockerfile的常用指令 二、构建过程 概述 随着微服务应用越来越多&#xff0c;大家需要尽快掌握dock…...

Java项目练习——学生管理系统

1. 整体结构 代码实现了基本的学生管理系统功能&#xff0c;包括登录、注册、忘记密码、添加、删除、修改和查询学生信息。 使用了ArrayList来存储用户和学生信息。 使用了Scanner类来处理用户输入。 2. 主要功能模块 登录 (logIn)&#xff1a;验证用户名和密码&#xff0c;…...

sqlserver、达梦、mysql的差异

差异项sqlserver达梦mysql单行注释---- 1、-- &#xff0c;--后面带个空格 2、# 包裹对象名称&#xff0c;如表、表字段等 [tableName] "tableName"tableName表字段自增IDENTITY(1, 1)IDENTITY(1, 1)AUTO_INCREMENT二进制数据类型IMAGEIMAGE、BLOBBLOB 存储一个汉字需…...

Spring AOP(定义、使用场景、用法、3种事务、事务失效场景及解决办法、面试题)

目录 1. AOP定义&#xff1f; 2.常见的AOP使用场景&#xff1a; 3.Spring AOP用法 3.1 Spring AOP中的几个核心概念 3.1.1 切面、切点、通知、连接点 3.1.2 切点表达式AspectJ 3.2 使用 Spring AOP 的步骤总结 3.2.1 添加依赖: 3.2.2 定义切面和切点&#xff08;切点和…...

Flutter鸿蒙next 封装对话框详解

✅近期推荐&#xff1a;求职神器 https://bbs.csdn.net/topics/619384540 &#x1f525;欢迎大家订阅系列专栏&#xff1a;flutter_鸿蒙next &#x1f4ac;淼学派语录&#xff1a;只有不断的否认自己和肯定自己&#xff0c;才能走出弯曲不平的泥泞路&#xff0c;因为平坦的大路…...

【项目实战】通过LLaMaFactory+Qwen2-VL-2B微调一个多模态医疗大模型

前言 随着多模态大模型的发展&#xff0c;其不仅限于文字处理&#xff0c;更能够在图像、视频、音频方面进行识别与理解。医疗领域中&#xff0c;医生们往往需要对各种医学图像进行处理&#xff0c;以辅助诊断和治疗。如果将多模态大模型与图像诊断相结合&#xff0c;那么这会…...

SCSI驱动与 UFS 驱动交互概况

SCSI子系统概况 SCSI&#xff08;Small Computer System Interface&#xff09;子系统是 Linux 中的一个模块化框架&#xff0c;用于提供与存储设备的通用接口。通过 SCSI 子系统&#xff0c;可以支持不同类型的存储协议&#xff08;如 UFS、SATA、SAS&#xff09;&#xff0c…...

软件工程实践项目:人事管理系统

一、项目的需求说明 通过移动设备登录app提供简单、方便的操作。根据公司原来的考勤管理制度&#xff0c;为公司不同管理层次提供相应的权限功能。通过app上面的各种标准操作&#xff0c;考勤管理无纸化的实现&#xff0c;使公司的考勤管理更加科学规范&#xff0c;从而节省考…...

微信小程序之bind和catch

这两个呢&#xff0c;都是绑定事件用的&#xff0c;具体使用有些小区别。 官方文档&#xff1a; 事件冒泡处理不同 bind&#xff1a;绑定的事件会向上冒泡&#xff0c;即触发当前组件的事件后&#xff0c;还会继续触发父组件的相同事件。例如&#xff0c;有一个子视图绑定了b…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...