当前位置: 首页 > news >正文

【抽代复习笔记】34-群(二十八):不变子群的几道例题

例1:证明,交换群的任何子群都是不变子群。

证:设(G,o)是交换群,H≤G,

对任意的a∈G,显然都有aH = {a o h|h∈H} = {h o a|h∈H} = Ha。

所以H⊿G。

【注:规范的不变子群符号是一个顶角指向左边的等腰三角形】

 

推论:

①循环群的子群都是不变子群;

②素数阶群的任何子群都是不变子群。

 

例2:证明,平凡子群是不变子群。

证:设(G,o)是一个群,则{e}和G本身是G的平凡子群。

①对∀a∈G,

显然a{e} = {a o e} = {a} = {e o a} = {e}a,

所以{e}是G的不变子群。

②下面证对∀a∈G,有aG = G = Ga:

对∀x∈G,有x = (a o a^(-1)) o x = a o (a^(-1) o x)∈aG,

即x∈aG,从而退出G⊆aG,又由aG的定义可知aG⊆G,所以G = aG,

同理可得Ga = G,

所以G⊿G。

 

例3:证明,设(G,o)是一个群,若N = {n∈G|n o a = a o n,a∈G},则N⊿G。

【这个不变子群称为G的中心,记作:C(G)。】

证:①对∀a∈G,有e o a = a = a o e,

所以e∈N,即N≠∅;

②∀n₁,n₂∈N,对∀a∈G,

有n₁ o a = a o n₁,n₂ o a = a o n₂,

所以(n₁ o n₂) o a = n₁ o (n₂ o a) = n₁ o (a o n₂) = (n₁ o a) o n₂ = (a o n₁) o n₂ = a o (n₁ o n₂),

所以n₁,n₂∈N;

③n₁^(-1) o a = (n₁^(-1) o a) o (n₁ o n₁^(-1)) = n₁^(-1) o (a o n₁) o n₁^(-1) = n₁^(-1) o (n₁ o a) o n₁^(-1) = (n₁^(-1) o n₁) o (a o n₁^(-1)) = a o n₁^(-1),

根据子群的第一判定定理,可得N≤G;

④由N的定义,易得aN = {a o n|n∈N} = {n o a|n∈N} = Na,

所以N⊿G。

 

例4:证明:

(1)K₄⊿A₄;

(2)N = {(1),(123),(132)}⊿S₃;

(3)H = {(1),(12)}不是S₃的不变子群。

证:(1)①因为K₄ = {(1),(12)(34),(13)(24),(14)(23)},

对∀a∈K₄,均有aK₄ = K₄a = K₄;

②因为(123)K₄ = K₄(123) = {(123),(134),(243),(142)},所以对∀a∈(123)K₄,有aK₄ = K₄a = (123)K₄;

③同②,因为(132)K₄ = K₄(132) = {(132),(143),(234),(124)},所以对∀a∈(132)K₄,有aK₄ = K₄a = (132)K₄,

同理可推出对∀a∈A₄,都有aK₄ = K₄a,

所以K₄⊿A₄。

(2)已知N是S₃的子群,运用(1)中同样的枚举法,易得对∀a∈S₃,有aN = Na,从而N⊿S₃。

(3)H = {(1),(12)}≤S₃,但对于(123)∈S₃,(123)H = {(123),(13)},而H(123) = {(123),(23)},即(123)H ≠ H(123),所以不满足不变子群的条件,

∴H不是S₃的不变子群。

[注:aN = Na并不是说a和N中的每一个元都适合交换律,而仅仅是作为集合它们是相等的。]

 

(待续……)

 

相关文章:

【抽代复习笔记】34-群(二十八):不变子群的几道例题

例1:证明,交换群的任何子群都是不变子群。 证:设(G,o)是交换群,H≤G, 对任意的a∈G,显然都有aH {a o h|h∈H} {h o a|h∈H} Ha。 所以H⊿G。 【注:规范的不变子群符号是一个顶角指向左边…...

Chrome和Firefox如何保护用户的浏览数据

在当今数字化时代,保护用户的浏览数据变得尤为重要。浏览器作为我们日常上网的主要工具,其安全性直接关系到个人信息的保密性。本文将详细介绍Chrome和Firefox这两款主流浏览器如何通过一系列功能来保护用户的浏览数据。(本文由https://chrom…...

CentOS 7镜像下载

新版本系统镜像下载(当前最新是CentOS 7.4版本) CentOS官网 官网地址 http://isoredirect.centos.org/centos/7.4.1708/isos/x86_64/ http://mirror.centos.org/centos/7/isos/ 国内的华为云,超级快:https://mirrors.huaweiclou…...

opencv-windows-cmake-Mingw-w64,编译opencv源码

Windows_MinGW_64_OpenCV在线编译动态库,并使用在C项目: (mingw-w64 cmakegithub actions方案) 修改版opencv在线编译: 加入opencv-contrib库, 一起编译生成动态库,在线编译好的opencv动态库,可以下载使用.验证opencv动态库是否可用的模板项目,测试opencv动态库是否可用的模板…...

Puppeteer点击系统:解锁百度流量点击率提升的解决案例

在数字营销领域,流量和搜索引擎优化(SEO)是提升网站可见性的关键。我开发了一个基于Puppeteer的点击系统,旨在自动化地提升百度流量点击率。本文将介绍这个系统如何通过模拟真实用户行为,优化关键词排名,并…...

Kyber原理解析

Kyber是一种IND-CCA2安全的密钥封装机制。Kyber的安全性基于在模格(MLWE问题)中解决LWE问题的难度。Kyber的构造采⽤两阶段⽅法:⾸先介绍⼀种⽤来加密固定32字节⻓度的消息原⽂的IND-CPA安全性的公钥加密⽅案,我们称之为 CPAPKE&a…...

2024 CCF CSP-J/S 2024 第二轮认证 真题试卷

2024年信息学奥赛CSP-J2入门级复赛真题试卷 题目总数:4 总分数:400 编程题 第 1 题 问答题 扑克牌(poker) 【题目描述】 小 P 从同学小 Q 那儿借来一副 n 张牌的扑克牌。 本题中我们不考虑大小王,此时每张牌具有两个属性:花色和…...

Android 无障碍服务常见问题梳理

android 无障碍服务本意是为了帮助盲人操作手机而设计,但是现在也有人利用这个做自动化操作。 本片文章讲述的主要用作自动化方面。 官方文档 关于配置方法和接口列表,参考 无障碍 比较常用的接口: 1. 执行点击操作 2. 触摸屏幕&#xf…...

Milvus 与 Faiss:选择合适的向量数据库

向量数据库 Milvus 和 Faiss 都是处理大规模向量数据的工具,尤其适用于需要相似性搜索的场景,比如推荐系统、图像检索和自然语言处理等。但它们各自的设计初衷和功能有所不同,适用于不同的使用场景。下面,我们从性能、功能特性、部…...

2024最全CTF入门指南、CTF夺旗赛及刷题网站(建议收藏!)

文章目录 一、赛事介绍二、竞赛模式三、CTF各大题型简介四、赛题情况分析CTF 工具集合Web | Web 安全🕸 MISC | 杂项❆ 基础工具❆ 解题工具❆ 开源脚本🔑 Crypto | 密码学 💫 Reverse | 逆向基础工具💥 PWN | 二进制 &#x1f44…...

【论文阅读】ESRGAN+

学习资料 论文题目:进一步改进增强型超分辨率生成对抗网络(ESRGAN : FURTHER IMPROVING ENHANCED SUPER-RESOLUTION GENERATIVE ADVERSARIAL NETWORK)论文地址:2001.08073代码:ncarraz/ESRGANplus: ICASSP …...

北京市首发教育领域人工智能应用指南,力推个性化教育新篇章

近年来,人工智能在全球教育领域的应用呈现蓬勃发展之势,各国都在探索如何将其更好的融入教育体系,在这一背景下,北京市于10月26日发布《北京市教育领域人工智能应用指南》(以下简称《指南》),推…...

【Java并发编程】信号量Semaphore详解

一、简介 Semaphore(信号量):是用来控制同时访问特定资源的线程数量,它通过协调各个线程,以保证合理的使用公共资源。 Semaphore 一般用于流量的控制,特别是公共资源有限的应用场景。例如数据库的连接&am…...

window11使用wsl2安装Ubuntu22.04

目录 1、快速了解wsl2 安装子系统linux流程(B站视频) 2、wsl2常用命令 3、windows与子系统Linux文件访问方法 4、子系统linux使用windows网络代理、网络配置(镜像网络,非NAT) 5、wsl2 Ubuntu miniconda 安装 6、…...

虚拟滚动 - 从基本实现到 Angular CDK

简介 在大数据列表的处理上,虚拟滚动是一种优化性能的有效方式。本篇文章将详细介绍两种常见的虚拟滚动实现方式:使用 transform 属性和 Intersection Observer。重点讲解如何通过 transform 属性实现高效的虚拟滚动,并对比Angular CDK中的实…...

Spring WebFlux学习笔记(一)

核心思想 WebFlux主要是异步 例子 参考一个源码&#xff1a; https://blog.csdn.net/qq_43923045/article/details/106309432?spm1001.2014.3001.5506 GetMapping("/delay1")public Mono<RestResult> delayResult() {long l System.currentTimeMillis();…...

富格林:正确追损思维安全交易

富格林指出&#xff0c;对于如何正确追损的这个问题是需要持续付出时间和精力的&#xff0c;发现具备耐心的投资者往往在正确追损的路上更加游刃有余。他们总是可以保持较为平和的心态&#xff0c;不急不躁地分析原因并通过自身掌握的安全应对措施来进行交易。富格林在以下分享…...

前端vue2迁移至uni-app

1.确定文件存放位置 components: 继续沿用 pages: views内容移动到pages static: assets内容移动到static uni_modules: uni-app的插件存放位置 迁移前 src├─assets│ └─less├─components│ ├─common│ │ ├─CommentPart│ │ └─MessDetail│ ├─home│…...

恋爱脑学Rust之闭包三Traits:Fn,FnOnce,FnMut

在Rust中&#xff0c;FnOnce、FnMut和Fn是三个用于表示闭包&#xff08;closure&#xff09;类型的trait。闭包是一种特殊的函数&#xff0c;它可以捕获其环境变量&#xff0c;即在其定义时所处的作用域中的变量。以下是关于这三个trait的详细介绍&#xff1a; 1. FnOnce&#…...

区块链介绍

区块链&#xff08;英文名&#xff1a;blockchain或block chain&#xff09;是一种块链式存储、不可篡改、安全可信的去中心化分布式账本&#xff0c;它结合了分布式存储、点对点传输、共识机制、密码学等技术&#xff0c;通过不断增长的数据块链&#xff08;Blocks&#xff09…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时&#xff0c;与数据库的交互无疑是核心环节。虽然传统的数据库操作方式&#xff08;如直接编写SQL语句与psycopg2交互&#xff09;赋予了我们精细的控制权&#xff0c;但在面对日益复杂的业务逻辑和快速迭代的需求时&#xff0c;这种方式的开发效率和可…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Android第十三次面试总结(四大 组件基础)

Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成&#xff0c;用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机&#xff1a; ​onCreate()​​ ​调用时机​&#xff1a;Activity 首次创建时调用。​…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

学习一下用鸿蒙​​DevEco Studio HarmonyOS5实现百度地图

在鸿蒙&#xff08;HarmonyOS5&#xff09;中集成百度地图&#xff0c;可以通过以下步骤和技术方案实现。结合鸿蒙的分布式能力和百度地图的API&#xff0c;可以构建跨设备的定位、导航和地图展示功能。 ​​1. 鸿蒙环境准备​​ ​​开发工具​​&#xff1a;下载安装 ​​De…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...