当前位置: 首页 > news >正文

深度学习中的迁移学习

文章目录

    • 一、迁移学习的基本概念
    • 二、迁移学习的步骤
    • 三、迁移学习的策略
    • 四、迁移学习的应用
    • 五、迁移学习的挑战与未来展望

深度学习中的迁移学习是一种重要的机器学习方法,其 核心思想在于利用从一个任务(源任务)中学到的知识或模型,来帮助解决另一个相关但不同的任务(目标任务)。以下是对深度学习中的迁移学习的详细解析:

一、迁移学习的基本概念

迁移学习通过将已在一个领域(源域)上训练好的模型作为起点,用于解决另一个领域(目标域)中的相似问题。这种方法避免了从头开始训练模型的繁琐过程,显著提高了学习效率。在深度学习中,迁移学习通常涉及使用在大规模数据集上预训练的模型,如在大规模图像数据集(如ImageNet)上预训练的VGG、ResNet等模型,然后根据新数据集的特点进行微调。

二、迁移学习的步骤

迁移学习的步骤通常包括以下几个阶段:

  1. 选择预训练的模型和适当的层:根据目标任务的特点,选择在大规模数据集上预训练的模型,并确定需要微调的模型层。对于低级特征的任务(如边缘检测),最好使用浅层模型的层;而对于高级特征的任务(如分类),则应选择更深层次的模型。
  2. 冻结预训练模型的参数:在训练初期,通常会冻结预训练模型的参数,只训练新增加的层或微调一些层。这样可以避免因为在数据集中过拟合导致预训练模型过度拟合。
  3. 在新数据集上训练新增加的层:在冻结预训练模型的参数情况下,训练新增加的层,使新模型适应新的任务。
  4. 微调预训练模型的层:在新层上进行训练后,可以解冻一些已经训练过的层,并将它们作为微调的目标。这样做可以提高模型在新数据集上的性能。
  5. 评估和测试:在训练完成之后,使用测试集对模型进行评估。如果模型的性能仍然不够好,可以尝试调整超参数或更改微调层。

三、迁移学习的策略

迁移学习主要有以下策略,每个策略适用于不同场景:

  1. 使用预训练模型的卷积层作为固定的特征提取器:只在输出部分添加新的全连接层或分类层。这种方法适用于源任务和目标任务相似度较高的情况,如图像分类任务。
  2. 在预训练模型的基础上保留底层特征,微调高层特征:这种方法适合在源任务和目标任务高度相似时使用。通过微调高层特征,使其适应新的目标任务。
  3. 跨领域迁移:针对不同领域任务的特征迁移策略,如图像到文本、语音到文本的跨领域迁移。需要添加或替换特定的适应层以完成不同领域的转换。

四、迁移学习的应用

迁移学习已经在各种领域得到了广泛的应用,特别是在计算机视觉、自然语言处理和语音识别等方面:

  1. 计算机视觉:在图像分类、目标检测和图像分割等任务中,使用预训练的卷积神经网络(如ResNet、Inception等)进行特征提取和微调,显著提高了模型在新数据集上的准确率和效率。
  2. 自然语言处理:在文本分类、命名实体识别和情感分析等任务中,利用预训练的语言模型(如BERT、GPT等)进行语义表示学习,并通过微调或调整策略适应新的文本数据集。
  3. 语音识别:利用预训练的声学模型和语言模型,在语音识别任务中提取语音特征和语言特征,并通过少量数据的微调实现对新说话人或新环境下语音的高效识别。

五、迁移学习的挑战与未来展望

尽管迁移学习已经取得了显著成果,但仍面临一些挑战:

  1. 领域间分布不匹配:源域和目标域之间的数据分布差异可能导致模型性能下降。
  2. 标签稀疏:目标域的标注数据较少,难以支撑传统监督学习方法。
  3. 模型适应性:模型在不同领域和任务间的适应性有待提高。

未来,迁移学习将与其他领域进行更紧密的融合,如强化学习、自适应学习等,以实现更高效的模型学习和更广泛的应用场景。同时,研究将致力于改进迁移学习算法,提高其在非线性、高维度数据上的性能,并增强模型的鲁棒性和泛化能力。

综上所述,深度学习中的迁移学习是一种强大的工具,为解决数据稀缺和新任务学习提供了有效的解决方案。通过合理选择和应用迁移学习的方法,研究者和开发者能够在各种领域中快速构建高效的深度学习模型,从而推动人工智能技术的进步和应用。

相关文章:

深度学习中的迁移学习

文章目录 一、迁移学习的基本概念二、迁移学习的步骤三、迁移学习的策略四、迁移学习的应用五、迁移学习的挑战与未来展望 深度学习中的迁移学习是一种重要的机器学习方法,其 核心思想在于利用从一个任务(源任务)中学到的知识或模型&#xf…...

【深入浅出】深入浅出Bert(附面试题)

本文的目的是为了帮助大家面试Bert,会结合我的面试经历以及看法去讲解Bert,并非完整的技术细致讲解,介意请移步。 深入浅出】深入浅出Bert(附面试题) 网络结构Pre-TrainingFine-Tuning 输入编码词向量编码句子编码位置…...

Docker-安装

操作系统:Ubuntu 20.04.6 LTS 更新apt sudo apt update 删除旧版本docker sudo apt-get remove docker docker-engine docker.io 安装docker sudo apt install docker.io 查看docker版本 docker --version 启动docker 启动docker sudo systemctl start docker 启用…...

《盼归》

《盼归》 烈日炎炎天桥上,小月踮脚望远方。 汗水滑落笑颜开,心中英雄是父忙。 车声轰鸣情意长,喇叭回应泪两行。 生日快乐声声唤,盼父归来情意长。 在一个炎热的夏日午后,阳光炙烤着大地,天桥上的温度达…...

第十九章 Vue组件之data函数

目录 一、引言 二、示例代码 2.1. 工程结构图 2.2. main.js 2.3. App.vue 2.4. BaseCount.vue 三、运行效果 一、引言 在Vue CLI脚手架中一个组件的data选项必须是一个函数,以此保证每个组件实例,维护独立的一份数据对象。每次创建新的组件实…...

【jvm】什么时候对象进入老年代

目录 1. 对象年龄达到阈值2. 大对象直接进入老年代3. 动态晋升条件 1. 对象年龄达到阈值 1.基本机制:当一个对象在新生代(包括Eden区和Survivor区)中经历了多次垃圾回收(GC)后仍然存活,其年龄会逐渐增加。…...

Vue.nextTick 使用指南:数据更新与 DOM 同步利器

前言 在使用 Vue.js 开发单页面应用时,我们常常需要在数据更新后执行一些操作,比如更新 DOM 或者进行一些依赖于最新数据的计算。这时候,Vue.nextTick 就显得尤为重要,本文将详细介绍 Vue.nextTick 的作用与使用方法。 什么是 V…...

第三百零一节 Lucene教程 - Lucene索引文件

Lucene教程 - Lucene索引文件 索引是识别文档并为搜索准备文档的过程。 下表列出了索引过程中常用的类。 类描述IndexWriter在索引过程中创建/更新索引。Directory表示索引的存储位置。Analyzer分析文档并从文本中获取标记/单词。Document带有字段的虚拟文档。分析仪可以处理…...

动态规划 01背包(算法)

现有四个物品,小偷的背包容量为8,怎么可以偷得价值较多的物品 如: 物品编号: 1 2 3 4 物品容量: 2 3 4 5 物品价值: 3 4 5 8 记f(k,w) ,当背包容量为w,可以偷k件物品…...

使用常数指针作为函数参数

在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和resetiosflags(); //setbase( char x )是设置输出数字的基数,如输出进制数则用setbas…...

wps宏代码学习

推荐学习视频&#xff1a;https://space.bilibili.com/363834767/channel/collectiondetail?sid1139008&spm_id_from333.788.0.0 打开宏编辑器和JS代码调试 工具-》开发工具-》WPS宏编辑器 左边是工程区&#xff0c;当打开多个excel时会有多个&#xff0c;要注意不要把…...

libavdevice.so.58: cannot open shared object file: No such file ordirectory踩坑

博主是将大图切分成小图时遇到 问题一、linux编译后&#xff0c;找不到ffmpeg中的一个文件 产生原因&#xff0c;各种包集成&#xff0c;然后安装以后乱七八糟&#xff0c;甚至官方的教程也不规范导致没有添加路径到系统文件导致系统执行的时候找不到 1.下载 博主进行的离线…...

Rust:Vec<u8> 与 [u8] 之间的转换

在 Rust 中&#xff0c;Vec<u8> 是一个动态数组&#xff0c;而 &[u8] 是一个指向字节切片的不可变引用。这两者之间经常需要进行转换&#xff0c;因为它们在处理字节数据时非常常见。 从 &[u8] 转换为 Vec<u8> 要将一个字节切片 &[u8] 转换为一个 Ve…...

Leetcode 课程表

这段代码的算法思想是基于**深度优先搜索&#xff08;DFS&#xff09;**来检测图中的环路&#xff0c;从而判断是否可以完成所有课程。具体来说&#xff0c;我们将每门课程和它的先修关系视为一个有向图&#xff0c;问题的核心就是判断这个有向图中是否存在环路。如果有环路&am…...

Java面试经典 150 题.P55. 跳跃游戏(009)

本题来自&#xff1a;力扣-面试经典 150 题 面试经典 150 题 - 学习计划 - 力扣&#xff08;LeetCode&#xff09;全球极客挚爱的技术成长平台https://leetcode.cn/studyplan/top-interview-150/ 题解&#xff1a; class Solution {public boolean canJump(int[] nums) {int…...

登录的时候密码使用crypto-js加密解密

首先要下载插件 npm install crypto-js 然后新建一个js文件 crypto.js // 导入 CryptoJS 模块 import CryptoJS from crypto-js; const secretKey"pZsgDSvzaeHWDkhLDxvrrrYvBlAsIHmZ";//一般是后端提供的 /*** description: 加解密函数* param {*} data 需要加密的数…...

LLM大模型部署实战指南:部署简化流程

LLM大模型部署实战指南:Ollama简化流程,OpenLLM灵活部署,LocalAI本地优化,Dify赋能应用开发 1. Ollama 部署的本地模型(🔺) Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。,这是 Ollama 的官网地址:https://ollama.com/ 以下是其…...

24年10月Google Play政策更新通知

今天gmail邮箱里收到了google play最新的政策更新通知&#xff0c;这次的通知对于我来说&#xff0c;影响不大&#xff0c;邮件内容主要分为三部分。 一、政策更新部分 这里更新的政策只有医疗功能相关的。针对健康和医疗应用增加了最新的医疗指南和免责声明要求&#xff0c;并…...

玄机-应急响应- Linux入侵排查

一、web目录存在木马&#xff0c;请找到木马的密码提交 到web目录进行搜索 find ./ type f -name "*.php" | xargs grep "eval(" 发现有三个可疑文件 1.php看到密码 1 flag{1} 二、服务器疑似存在不死马&#xff0c;请找到不死马的密码提交 被md5加密的…...

数据驱动业务中的BDS对账班牛返款表集成方案

数据驱动业务中的BDS对账班牛返款表集成方案 BDS对账班牛返款表_update&#xff1a;班牛数据集成到MySQL的技术实现 在数据驱动的业务环境中&#xff0c;如何高效、准确地将分散在不同系统中的数据进行整合&#xff0c;是每个企业面临的重要挑战。本文将分享一个具体的技术案例…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

面试高频问题

文章目录 &#x1f680; 消息队列核心技术揭秘&#xff1a;从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"&#xff1f;性能背后的秘密1.1 顺序写入与零拷贝&#xff1a;性能的双引擎1.2 分区并行&#xff1a;数据的"八车道高速公路"1.3 页缓存与批量处理…...

Vue3中的computer和watch

computed的写法 在页面中 <div>{{ calcNumber }}</div>script中 写法1 常用 import { computed, ref } from vue; let price ref(100);const priceAdd () > { //函数方法 price 1price.value ; }//计算属性 let calcNumber computed(() > {return ${p…...