当前位置: 首页 > news >正文

OpenGL入门003——使用Factory设计模式简化渲染流程

前面两节已经学会了如何使用opengl创建窗口并绘制三角形,我们可以看出有些步骤是固定的,而且都写在main.cpp,这一节我们将了解如何使用Factroy设计模型。将模型渲染逻辑封装在一个单独的类中,简化开发流程,且提高代码复用性。

文章目录

  • 一些概念
    • Factory设计模式
  • 实战
    • 简介
    • utils
      • windowFactory.h
      • TriangleModel.h
      • TriangleMode.cpp
    • main.cpp
    • CMakeLists.txt
    • 最终效果

一些概念

Factory设计模式

概述: 提供了一种将对象的实例化过程封装起来的方式, 使得客户端可以通过调用Factroy类的方法来创建对象。

作用:

  • 封装对象的创建过程,将对象的实例化过程封装在Factory类中,客户端可以通过调用工厂类的方法来创建对象,而无需知道对象的具体实现细节
  • 隐藏对象的创建逻辑,从而实现对象的创建逻辑和客户端代码的分离
  • 提高代码的可维护性和可扩展性以及复用性

实战

简介

怎么在vscode上使用cmake构建项目,具体可以看这篇Windows上如何使用CMake构建项目 - 凌云行者的博客

目的: 使用Factory设计模式绘制一个三角形

环境:

  • 编译工具链:使用msys2安装的mingw-gcc
  • 依赖项:glfw3:x64-mingw-static,glad:x64-mingw-static(通过vcpkg安装)

utils

创建utils目录,将windowFactory.h,TriangleModel.h,TriangleMode.cpp文件放到这个目录下面

windowFactory.h

作用: 实现创建窗口对象的Factory类

#pragma once
#include <glad/glad.h> // gald前面不能包含任何opengl头文件
#include <GLFW/glfw3.h>
#include <functional>
#include <iostream>using std::cout;
using std::endl;class GLFWWindowFactory {
public:// 默认构造函数GLFWWindowFactory() {}// 构造函数,初始化窗口GLFWWindowFactory(int width, int height, const char* title) {// 初始化glfwglfwInit();// 设置opengl版本glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);// 使用核心模式:确保不使用任何被弃用的功能glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);// 创建glfw窗口this->window = glfwCreateWindow(width, height, title, NULL, NULL);if (this->window == NULL) {cout << "Failed to create GLFW window" << endl;glfwTerminate();exit(-1);}// 设置当前窗口的上下文glfwMakeContextCurrent(this->window);// 设置窗口大小改变的回调函数glfwSetFramebufferSizeCallback(this->window, framebuffer_size_callback);// 加载所有opengl函数指针if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress)) {cout << "Failed to initialize GLAD" << endl;}// 再次设置当前窗口的上下文,确保当前上下文仍然是刚刚创建的窗口,是一个安全措施glfwMakeContextCurrent(this->window);// 设置窗口大小改变的回调函数glfwSetFramebufferSizeCallback(this->window, framebuffer_size_callback);}// 获取窗口对象GLFWwindow* getWindow() {return this->window;}// 运行窗口,传入一个自定义的更新函数void run(std::function<void()> updateFunc) {// 启用深度测试,opengl将在绘制每个像素之前比较其深度值,以确定该像素是否应该被绘制glEnable(GL_DEPTH_TEST);// 循环渲染while (!glfwWindowShouldClose(this->window)) { // 检查是否应该关闭窗口// 清空屏幕所用的颜色glClearColor(0.0f, 0.0f, 0.0f, 1.0f);// 清空颜色缓冲,主要目的是为每一帧的渲染准备一个干净的画布glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);// 处理输入GLFWWindowFactory::process_input(this->window);// 执行更新函数updateFunc();// 交换缓冲区glfwSwapBuffers(this->window);// 处理所有待处理事件,去poll所有事件,看看哪个没处理的glfwPollEvents();}// 终止GLFW,清理GLFW分配的资源glfwTerminate();}// 窗口大小改变的回调函数static void framebuffer_size_callback(GLFWwindow* window, int width, int height) {// 确保视口与新窗口尺寸匹配,注意在视网膜显示器上,宽度和高度会显著大于指定值glViewport(0, 0, width, height);}// 处理输入static void process_input(GLFWwindow* window) {// 按下ESC键时进入if块if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)// 关闭窗口glfwSetWindowShouldClose(window, true);}private:// 窗口对象GLFWwindow* window;
};

TriangleModel.h

作用: 三角模型的头文件

#include <glad/glad.h>class TriangleModel {
public: // 默认构造函数TriangleModel();// 默认析构函数~TriangleModel();// 绘制三角形void draw();private:unsigned int VAO;unsigned int VBO;// 着色器程序unsigned int shaderProgram;// 编译着色器void compileShaders();// 设置缓冲区void setupBuffers();
};

TriangleMode.cpp

作用: 三角形模型的具体实现

#include "TriangleModel.h"
#include <iostream>using std::cout;
using std::endl;// 顶点属性位置
const int VERTEX_ATTR_POSITION = 0;
// 每个顶点的组件数
const int NUM_COMPONENTS_PER_VERTEX = 3;// 默认构造函数
TriangleModel::TriangleModel() {// 编译着色器compileShaders();// 设置缓冲区setupBuffers();
}// 析构函数
TriangleModel::~TriangleModel() {// 删除VAOglDeleteVertexArrays(1, &this->VAO);// 删除VBOglDeleteBuffers(1, &this->VBO);
}/// public
// 绘制三角形
void TriangleModel::draw() {// 使用着色器程序glUseProgram(this->shaderProgram);// 绑定VAOglBindVertexArray(this->VAO);// 绘制三角形glDrawArrays(GL_TRIANGLES, 0, 3);
}/// private
// 编译着色器
void TriangleModel::compileShaders() {// 顶点着色器源码const char* vertexShaderSource = "#version 330 core\n" // 指定了GLSL(OpenGL着色器语言)的版本"layout (location = 0) in vec3 aPos;\n" // 定义了一个输入变量aPos,它是一个vec3类型的变量, 并且指定了它的位置值为0, 这意味着顶点属性数组的第一个属性将被绑定到这个变量"void main()\n""{\n""   gl_Position = vec4(aPos.x, aPos.y, aPos.z, 1.0);\n" // 将输入的顶点位置aPos转换为一个四维向量,gl_Postion是OpengGL固定功能管线中用于存储顶点位置的变量"}\0";// 片段着色器源码const char* fragmentShaderSource = "#version 330 core\n" // 指定了GLSL(OpenGL着色器语言)的版本"out vec4 FragColor;\n" // 定义了一个输出变量FragColor,它是一个vec4类型的变量,表示片段颜色,out关键字表示这个变量将输出到渲染管线的下一个阶段"void main()\n""{\n""   FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n" // 将输出颜色设置为橙色"}\n\0";// 构建并编译顶点着色程序// 创建一个着色器对象,GL_VERTEX_SHADER表示顶点着色器unsigned int vertexShader = glCreateShader(GL_VERTEX_SHADER);// 将着色器源码附加到着色器对象上glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);// 编译着色器glCompileShader(vertexShader);// 检查着色器是否编译成功int success;char infoLog[512];glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);if (!success) {glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n"<< infoLog << endl;}// 构建并编译片段着色器// 创建一个着色器对象,GL_FRAGMENT_SHADER表示片段着色器unsigned int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);// 将着色器源码附加到着色器对象上glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);// 编译着色器glCompileShader(fragmentShader);// 检查着色器是否编译成功glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);if (!success) {glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n"<< infoLog << endl;}// 创建着色器程序对象this->shaderProgram = glCreateProgram();// 将着色器对象附加到着色器程序上glAttachShader(shaderProgram, vertexShader);glAttachShader(shaderProgram, fragmentShader);// 链接程序对象glLinkProgram(shaderProgram);// 检查链接是否成功glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);if (!success) {glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n"<< infoLog << endl;}// 删除着色器对象glDeleteShader(vertexShader);glDeleteShader(fragmentShader);
}// 设置缓冲区
void TriangleModel::setupBuffers() {// 顶点数据float vertices[] = {-0.5f, -0.5f, 0.0f,0.5f, -0.5f, 0.0f,0.0f, 0.5f, 0.0f,1.0f, -0.5f, 0.0f,0.5f, -0.5f, 0.0f,0.25f, 0.0f, 0.0f};// 生成一个VAOglGenVertexArrays(1, &this->VAO);// 绑定VAO,使其成为当前操作的VAOglBindVertexArray(this->VAO);// 生成一个VBOglGenBuffers(1, &this->VBO);// 绑定VBO, 使其成为当前操作的VBO,GL_ARRAY_BUFFER表示顶点缓冲区glBindBuffer(GL_ARRAY_BUFFER, this->VBO);// 为当前绑定的VBO创建并初始化数据存储,GL_STATIC_DRAW表示数据将一次性提供给缓冲区,并且在之后的绘制过程中不会频繁更改glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);// 定义顶点属性的布局// - index:顶点属性的索引// - size:每个顶点属性的数量,每个顶点有三个分享// - type:数据类型// - normalized:是否将非浮点数值归一化// - stride:连续顶点属性之间的间隔// - pointer:数据在缓冲区中的偏移量glVertexAttribPointer(VERTEX_ATTR_POSITION, NUM_COMPONENTS_PER_VERTEX, GL_FLOAT, GL_FALSE, NUM_COMPONENTS_PER_VERTEX * sizeof(float), (void*)0);// 启用顶点属性数组glEnableVertexAttribArray(VERTEX_ATTR_POSITION);
}

main.cpp

#include "utils/TriangleModel.h"
#include "utils/windowFactory.h"int main() {// 创建一个窗口Factory对象GLFWWindowFactory myWindow(800, 600, "This is Title");// 创建一个三角形模型对象TriangleModel triangle;// 运行窗口,传入一个lambda表达式,用于自定义渲染逻辑myWindow.run([&]() {// 绘制三角形triangle.draw();});return 0;
}

CMakeLists.txt

# 设置CMake的最低版本要求
cmake_minimum_required(VERSION 3.10)
# 设置项目名称
project(HelloFactory)# vcpkg集成, 这里要换成你自己的vcpkg工具链文件和共享库路径
set(VCPKG_ROOT D:/software6/vcpkg/)
set(CMAKE_TOOLCHAIN_FILE ${VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake)
set(CMAKE_PREFIX_PATH ${VCPKG_ROOT}/installed/x64-mingw-static/share)# 查找所需的包
find_package(glad CONFIG REQUIRED)
find_package(glfw3 CONFIG REQUIRED)# 搜索并收集utils文件夹下的所有源文件
file(GLOB UTILS "utils/*.cpp", "utils/*.h")# 添加可执行文件(还要加入utils文件夹下的源文件)
add_executable(HelloFactory main.cpp ${UTILS})# 链接所需的库
target_link_libraries(HelloFactory PRIVATE glad::glad glfw)

最终效果

在这里插入图片描述

相关文章:

OpenGL入门003——使用Factory设计模式简化渲染流程

前面两节已经学会了如何使用opengl创建窗口并绘制三角形&#xff0c;我们可以看出有些步骤是固定的&#xff0c;而且都写在main.cpp&#xff0c;这一节我们将了解如何使用Factroy设计模型。将模型渲染逻辑封装在一个单独的类中&#xff0c;简化开发流程&#xff0c;且提高代码复…...

01_AI编程案例展示:借助AI轻松爬取海量网盘链接

爬虫案例展示 今天,我们将展示如何利用AI快速开发一个网络爬虫&#xff0c; 使用的工具是Python和Claude 3.5 Sonnet(国内可用豆包替代) 我们的目标是爬取panhub.fun网站上的夸克网盘链接, 即使你是编程新手,也可以轻松完成这样的任务。 案例1-批量爬取panhub网盘整合包 下…...

【机器学习导引】ch5-神经网络

Q&A 1x1 卷积层在深度学习中的作用&#xff1f; 1x1 卷积层在深度学习中具有几个重要的作用&#xff1a; 通道压缩&#xff1a;1x1卷积可以通过调整输出通道数来减少特征图的深度&#xff0c;从而降低计算成本和参数数量。这有助于在保持特征的情况下简化模型。特征融合&am…...

【Axure原型分享】颜色选择器——填充颜色

今天和大家分享颜色选择器——填充颜色的原型模板&#xff0c;点击颜色区域可以弹出颜色选择器&#xff0c;点击可以选择对应颜色&#xff0c;颜色区域会变色我们选择的颜色&#xff0c;具体效果可以观看下方视频或者打开预览地址体验。 【原型效果】 【Axure高保真原型】颜色…...

怎么安装行星减速电机才是正确的

行星减速电机由于其高效、精密的传动能力&#xff0c;广泛应用于自动化设备、机器人、机床以及其他需要精准控制的领域。正确的安装行星减速电机对于确保设备的性能与延长使用寿命至关重要。 一、前期准备 在进行行星减速电机的安装之前&#xff0c;必须做好充分的前期准备工作…...

Unity程序化生成地形

制作地形&#xff1a; 绘制方块逐个绘制方块并加噪波高度删除Gizmos和逐个绘制 1.draw quad using System.Collections; using System.Collections.Generic; using UnityEngine;[RequireComponent(typeof(MeshFilter))] public class mesh_generator : MonoBehaviour {Mesh m…...

Vxe UI vue vxe-table 表格中使用下拉表格,单元格渲染下拉表格

Vxe UI vue vxe-table 表格中使用下拉表格&#xff0c;单元格渲染下拉表格 单元格中渲染下拉表格&#xff0c;需要使用到 vxe-table-select 这个组件&#xff0c;在 vxe-table 4.7 中使用非常简单&#xff0c;只需要配置好渲染器数据源就可以。 支持单选 也可以多选 代码 …...

Android开发教程实加载中...动效

Android开发教程实加载中…动效 加载中&#xff0c;发送中&#xff0c;匹配中都可以用&#xff0c;就是后面是三个点还是两个点&#xff0c;不断在切换 一、思路&#xff1a; 隔500ms发送一次&#xff0c;改变内容 二、效果图&#xff1a; 看视频更加直观点&#xff1a; An…...

NVR设备ONVIF接入平台EasyCVR视频融合平台智慧小区视频监控系统建设方案

一、方案背景 智慧小区构成了“平安城市”建设的基石。随着社会的进步&#xff0c;社区安全问题逐渐成为公众关注的热点。诸如高空抛物、乱丢垃圾、破坏车辆、入室盗窃等不文明行为和违法行为频繁出现。目前&#xff0c;许多小区的物业管理和安全防护系统仍然较为简单和陈旧&a…...

适配器模式适用的场景

适配器模式是一种常用的设计模式&#xff0c;能够将不兼容的接口转换为客户端所需的接口。在实际开发中&#xff0c;我们常常会遇到需要统一接口、替换外部系统、兼容旧接口或适配不同数据格式的情况。本文将结合详细的代码示例&#xff0c;介绍适配器模式的适用场景。 1. 统一…...

Ambari里面添加hive组件

1.创建hive数据库 在添加hive组件之前需要做的事情&#xff0c;先在master这个虚拟机里面创建好hive 先进入虚拟机里面进入mysql 然后输入这个命令看看有没有自己创建的hive数据库 show databases;有的话会显示下面这个样子 没有的同学使用以下命令可以在MySQL中创建hive数…...

Windows部署rabbitmq

本次安装环境&#xff1a; 系统&#xff1a;Windows 11 软件建议版本&#xff1a; erlang OPT 26.0.2rabbitmq 3.12.4 一、下载 1.1 下载erlang 官网下载地址&#xff1a; 1.2 下载rabbitmq 官网下载地址&#xff1a; 建议使用解压版&#xff0c;安装版可能会在安装软件…...

【Flask】四、flask连接并操作数据库

目录 前言 一、 安装必要的库 二、配置数据库连接 三、定义模型 四、操作数据库 1.添加用户 2.删除用户 3.更新用户信息 4查询所有用户 五、测试结果 前言 在Flask框架中&#xff0c;数据库的操作是一个核心功能&#xff0c;它允许开发者与后端数据库进行交互&#xf…...

ES跟Kafka集成

配合流程 1. Kafka作为分布式流处理平台&#xff0c;能够实时收集和处理不同数据源的数据流&#xff1b; 2. 通过Kafka Connect或者Logstash等中间件&#xff0c;可以将Kafka中的数据流实时推送到Elasticsearch中&#xff1b; 3. Elasticsearch接收到数据后&#xff0c;会根据…...

Python Matplotlib:基本图表绘制指南

Python Matplotlib&#xff1a;基本图表绘制指南 Matplotlib 是 Python 中一个非常流行的绘图库&#xff0c;它以简单易用和功能丰富而闻名&#xff0c;适合各种场景的数据可视化需求。在数据分析和数据科学领域&#xff0c;Matplotlib 是我们展示数据的有力工具。本文将详细讲…...

供应商图纸外发:如何做到既安全又高效?

供应商跟合作伙伴、客户之间会涉及到图纸外发的场景&#xff0c;这是一个涉及数据安全、效率及合规性的重要环节。供应商图纸发送流程一般如下&#xff1a; 1.申请与审批 采购人员根据需要提出发放图纸的申请并提交审批&#xff1b; 采购部负责人审批发放申请&#xff0c;确…...

探索 Move 编程语言:智能合约开发的新纪元

目录 引言 一、变量的定义 二、整型 如何在Move中表示小数和负数&#xff1f; 三、运算符 as运算符 布尔型 地址类型 四、什么是包&#xff1f; 五、什么是模块&#xff1f; 六、如何定义方法&#xff1f; 方法访问权限控制 init方法 总结 引言 Move 是一种专为区…...

vue3+vant实现视频播放(含首次禁止进度条拖拽,视频看完后恢复,保存播放视频进度,刷新及下次进入继续播放,判断视频有无全部看完等)

1、效果图 2、 <div><videocontrolsclass"video_player"ref"videoPlayer":src"videoSrc"timeupdate"handleTimeUpdate"play"onPlay"pause"onPause"ended"onVideoEnded"></video><…...

情感强度分析:精确衡量文本情感强弱的 AI 技术

情感强度分析&#xff1a;精确衡量文本情感强弱的 AI 技术 一、引言 在当今信息爆炸的时代&#xff0c;我们每天都会接触到大量的文本信息。这些文本中蕴含着各种各样的情感&#xff0c;如喜悦、悲伤、愤怒、恐惧等。如何准确地理解和分析这些文本的情感强度&#xff0c;对于…...

工厂方法模式与抽象工厂模式

工厂方法模式 (Factory Method) 定义&#xff1a; 工厂方法模式是一种创建型设计模式&#xff0c;它定义了一个用于创建对象的接口&#xff0c;但让子类决定实例化哪个类。工厂方法将类的实例化推迟到子类。 优点&#xff1a; 解耦&#xff1a;客户端代码与具体的产品类解耦…...

NoSQL——Redis配置与优化

目录 关系型&非关系型数据库 一、核心原理对比‌ ‌二、核心特性对比‌ ‌三、关键区别剖析‌ ‌四、典型产品示例‌ ‌总结‌ Redis Redis核心原理 核心特性 技术意义 配置文件解析 1. 基础配置 2. 持久化配置 3. 内存管理 4. 高可用配置 5. 性能调优 6.…...

MySQL技术内幕1:内容介绍+MySQL编译使用介绍

文章目录 1.整体内容介绍2.下载编译流程2.1 安装编译工具和依赖库2.2 下载编译 3.配置MySQL3.1 数据库初始化3.2 编辑配置文件3.3 启动停止MySQL3.4 登录并修改密码 1.整体内容介绍 MySQL技术系列文章将从MySQL下载编译&#xff0c;使用到MySQL各组件使用原理源码分析&#xf…...

我认为STM32输入只分为模拟输入 与 数字输入

核心概念解析 模拟输入 (Analog Input) 设计目的&#xff1a;直接连接模拟信号&#xff08;如ADC采集电压、温度传感器输出&#xff09; 硬件行为&#xff1a; ✅ 断开内部数字电路&#xff08;施密特触发器禁用&#xff09; ✅ 信号直通模拟外设&#xff08;如ADC、运放&…...

编程笔记---问题小计

编程笔记 qml ProgressBar 为什么valuemodel.progress / 100 在QML中&#xff0c;ProgressBar的value属性用于表示进度条的当前进度值&#xff0c;其范围通常为0到1&#xff08;或0%到100%&#xff09;。当使用model.progress / 100来设置value时&#xff0c;这样做的原因是为…...

【网络安全】fastjson原生链分析

fastjson 原生链 前言 说起 fastjson 反序列化&#xff0c;大部分的利用都是从 type 把 json 串解析为 java 对象&#xff0c;在构造方法和 setter、getter 方法中&#xff0c;做一些文件或者命令执行的操作。当然&#xff0c;在 fastjson 的依赖包中&#xff0c;也存在着像 …...

从入门到实战:AI学习路线全解析——避坑指南

分享一下阿里的人工智能学习路线,为感兴趣系统学习的小伙伴们探路。 一、谁适合学这门AI课程?五类人群的精准定位 无论你是零基础小白还是职场转型者,这套系统化课程都能为你量身定制成长路径: 零基础爱好者(无编程/数学背景) 课程提供Python和数学前置学习建议,先补基…...

AI赋能的浏览器自动化:Playwright MCP安装配置与实操案例

以下是对Playwright MCP的简单介绍&#xff1a; Playwright MCP 是一个基于 Playwright 的 MCP 工具&#xff0c;提供浏览器自动化功能不要求视觉模型支持&#xff0c;普通的文本大语言模型就可以通过结构化数据与网页交互支持多种浏览器操作&#xff0c;包括截图、点击、拖动…...

数据库(sqlite)基本操作

数据库&#xff08;sqlite&#xff09; 一&#xff1a;简介&#xff1a; 为什么需要单独的数据库来进行管理数据&#xff1f; 数据的各种查询功能数据的备份和恢复花大量时间在文件数据的结构设计和维护上要考虑多线程对数据的操作会涉及到同步问题&#xff0c;会增加很多额…...

多线程3(Thread)

wait / notify 线程调度是随机的&#xff0c;但是我们可以使用wait/notify进行规划。 join是控制线程结束顺序&#xff0c;而wait/notify是控制详细的代码块&#xff0c;例如&#xff1a; 线程1执行完一段代码&#xff0c;让线程2继续执行&#xff0c;此时线程2就通过wait进…...

Git 常见操作

目录 1.git stash 2.合并多个commit 3. git commit -amend (后悔药) 4.版本回退 5.merge和rebase 6.cherry pick 7.分支 8.alias 1.git stash git-stash操作_git stash 怎么增加更改内容-CSDN博客 2.合并多个commit 通过git bash工具交互式操作。 1.查询commit的c…...