《GBDT 算法的原理推导》 11-12计算损失函数的负梯度 公式解析
本文是将文章《GBDT 算法的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。
公式(11-12)是GBDT算法中非常关键的一步,它表示了如何通过计算损失函数的负梯度来指导下一棵树的生长。
公式(11-12)如下:
r m i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) r_{mi} = - \left[ \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f(x) = f_{m-1}(x)} rmi=−[∂f(xi)∂L(yi,f(xi))]f(x)=fm−1(x)
1. 公式的背景
在GBDT中,我们的目标是最小化一个损失函数 L ( y , f ( x ) ) L(y, f(x)) L(y,f(x)),其中:
- y y y 是真实值,
- f ( x ) f(x) f(x) 是模型的预测值。
每一轮 m m m 的模型 f m ( x ) f_m(x) fm(x) 是在前一轮的基础上进行改进的,即:
f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m ) f_m(x) = f_{m-1}(x) + T(x; \Theta_m) fm(x)=fm−1(x)+T(x;Θm)
这里的 T ( x ; Θ m ) T(x; \Theta_m) T(x;Θm) 是新增的树,我们希望它能纠正前一轮模型 f m − 1 ( x ) f_{m-1}(x) fm−1(x) 的误差。
2. 负梯度的意义
为了指导新树的构建,我们需要让新树 T ( x ; Θ m ) T(x; \Theta_m) T(x;Θm) 能够减少当前模型 f m − 1 ( x ) f_{m-1}(x) fm−1(x) 的误差。GBDT使用了一个关键的技巧:用损失函数的负梯度来近似每个样本的残差,即误差。
- 损失函数的负梯度表示模型需要改进的方向。通过沿着负梯度的方向优化,我们可以使得损失逐步减小。
- 具体来说,公式(11-12)中的 r m i r_{mi} rmi 是第 m m m 轮中第 i i i 个样本的负梯度,它表示当前模型对该样本的误差方向和大小。
3. 公式(11-12)的含义
公式(11-12)中的 r m i r_{mi} rmi 是针对第 m m m 轮中第 i i i 个样本计算的负梯度:
r m i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x ) r_{mi} = - \left[ \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} \right]_{f(x) = f_{m-1}(x)} rmi=−[∂f(xi)∂L(yi,f(xi))]f(x)=fm−1(x)
其中:
- L ( y i , f ( x i ) ) L(y_i, f(x_i)) L(yi,f(xi)) 是损失函数,表示模型预测 f ( x i ) f(x_i) f(xi) 与真实值 y i y_i yi 之间的误差。
- ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} ∂f(xi)∂L(yi,f(xi)) 是损失函数关于模型输出 f ( x i ) f(x_i) f(xi) 的偏导数。偏导数表示的是损失函数在 f ( x i ) f(x_i) f(xi) 处的变化趋势。
- 负号 − - − 表示我们要沿着负梯度方向去优化,即在模型的当前输出基础上减少误差。
因此, r m i r_{mi} rmi 表示的是在第 m m m 轮中,第 i i i 个样本的当前模型预测值与真实值之间的差异(残差)的一个估计,并且这个估计是基于损失函数的梯度计算的。
4. 负梯度用于训练新树
在GBDT的第 m m m 轮中,新树 T ( x ; Θ m ) T(x; \Theta_m) T(x;Θm) 是通过拟合所有样本的负梯度 r m i r_{mi} rmi 来生成的。也就是说,这棵新树的任务是尽可能准确地拟合当前模型的“误差”部分,从而在下一轮更新中进一步减少总损失。
5. 举个例子
假设我们使用的是平方损失函数:
L ( y i , f ( x i ) ) = 1 2 ( y i − f ( x i ) ) 2 L(y_i, f(x_i)) = \frac{1}{2} (y_i - f(x_i))^2 L(yi,f(xi))=21(yi−f(xi))2
那么,损失函数对于 f ( x i ) f(x_i) f(xi) 的导数是:
∂ L ( y i , f ( x i ) ) ∂ f ( x i ) = f ( x i ) − y i \frac{\partial L(y_i, f(x_i))}{\partial f(x_i)} = f(x_i) - y_i ∂f(xi)∂L(yi,f(xi))=f(xi)−yi
因此,在平方损失的情况下,公式(11-12)中的负梯度就是:
r m i = − ( f m − 1 ( x i ) − y i ) = y i − f m − 1 ( x i ) r_{mi} = - (f_{m-1}(x_i) - y_i) = y_i - f_{m-1}(x_i) rmi=−(fm−1(xi)−yi)=yi−fm−1(xi)
这表示负梯度等于当前模型的残差 y i − f m − 1 ( x i ) y_i - f_{m-1}(x_i) yi−fm−1(xi),即真实值和预测值的差值。因此,新的树会拟合这个残差,从而在下一轮更新时使模型预测值更接近真实值。
总结
公式(11-12)表示,GBDT中的每一轮迭代都使用当前模型的损失函数负梯度作为新的目标值,以此指导下一棵树的生成。这种方法使得每一棵新树都在不断纠正前面模型的不足,逐步提升整体模型的性能。
相关文章:
《GBDT 算法的原理推导》 11-12计算损失函数的负梯度 公式解析
本文是将文章《GBDT 算法的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。 公式(11-12)是GBDT算法中非常关键的一步,它表示了如何通过计算损失函数的负梯度来指导下一棵树的生长。 公式(11-12)如下: r m i − [ ∂ …...
mysql设计
大家好,我是捡田螺的小男孩。 昨天一位粉丝,咨询了一个并发的问题~ 我提供了一个乐观锁兜底的方案,然后发现他们的表,都没有加version字段的,我想到,这不是表设计通用字段嘛。因此,本文跟大家聊聊…...
Android 斗鱼面经
Android 斗鱼面经 文章目录 Android 斗鱼面经一面二面 一面 先简单描述一下JVM JRE JDK的关系 :::info JVM(Java Virtual Machine) Java 虚拟机。它只认识 xxx.class 这种类型的文件,它能够将 class 文件中的字节码指令进行识别并调用操作…...

【机器学习】26. 聚类评估方法
聚类评估方法 1. Unsupervised Measure1.1. Method 1: measure cohesion and separationSilhouette coefficient Method 2:Correlation between two similarity matricesMethod 3:Visual Inspection of similarity matrix 2. Supervised measures3. 决定…...
linux 最多能创建多少个 TCP 连接?
linux 最大允许TCP连接数 约束一:服务器的端口范围约束二,服务器文件描述符限制约束三:系统线程约束四:系统内存总结 tcp连接四元组:源ip,源端口 <> 目标ip,目标端口 连续对同一个目标ip及…...

我为何要用wordpress搭建一个自己的独立博客
我在csdn有一个博客,这个博客是之前学习编程时建立的。 博客有哪些好处呢? 1,可以写自己的遇到的问题和如何解决的步骤 2,心得体会,经验,和踩坑 3,可以转载别人的好的技术知识 4,宝贵…...

Linux系统每日定时备份mysql数据
一、创建存储脚本的文件夹 创建文件夹,我的脚本放在/root/dbback/mysql mkdir ... cd /root/dbback/mysql 二、编写脚本 vi backup_mysql.sh 复制脚本内容 DB_USER"填写用户名" DB_PASSWORD"填写密码" DB_NAME"数据库名称" # …...

书生大模型第一关Linux基础知识
任务一:完成SSH连接与端口映射并运行hello_world.py 1.SSH及其端口映射 2.在VSCode中安装插件: 3.创建开发机 最后点击创建,然后可能需要等待一段较长的时间,大概需要5分钟左右,如果需要排队则更长时间 然后选择…...

机器学习之fetch_olivetti_faces人脸识别--基于Python实现
fetch_olivetti_faces 数据集下载 fetch_olivetti_faceshttps://github.com/jikechao/olivettifaces sklearn.datasets.fetch_olivetti_faces(*, data_homeNone, shuffleFalse, random_state0, download_if_missingTrue, return_X_yFalse, n_retries3, delay1.0)[source] L…...
【系统设计】深入理解HTTP缓存机制:从Read-Through缓存到HTTP缓存的交互流程
在现代Web开发中,缓存机制扮演着至关重要的角色。它不仅提升了用户体验,还极大地优化了资源的使用效率。在这篇博文中,我们将从“Read-Through”缓存的概念出发,深入探讨HTTP缓存的工作原理和交互流程,并详细描述max-a…...
FLINK单机版安装部署入门-1
文章目录 FLINK单机版安装部署高于1.9.3需要修改配置文件flink-conf.yaml(低于1.9.3可以跳过)linux启动集群windows下启动Flink实例运行(单机)还有一种方式是上传任务包运行examples\streamingjava: Compilation failed: internal java compiler error高版本启动脚本 FLINK单机…...

深度学习-学习率调整策略
在深度学习中,学习率调整策略(Learning Rate Scheduling)用于在训练过程中动态调整学习率,以实现更快的收敛和更好的模型性能。选择合适的学习率策略可以避免模型陷入局部最优、震荡不稳定等问题。下面介绍一些常见的学习率调整策…...
【学员提问bug】小程序在onUnload里面调接口,用来记录退出的时间, 但是接口调用还没成功, 页面就关闭了。如何让接口在onUnload关闭前调用成功?
这种问题比较通用,并不涉及到具体方法执行障碍,所以,解决起来也不麻烦。但是新手往往不知道如何做。 在小程序中,如果在 onUnload 中调用 API 记录页面退出时间,但因为页面关闭速度较快导致请求未完成,可以…...

【刷题13】链表专题
目录 一、两数相加二、两两交换链表的节点三、重排链表四、合并k个升序链表五、k个一组翻转链表 一、两数相加 题目: 思路: 注意整数是逆序存储的,结果要按照题目的要求用链表连接起来遍历l1的cur1,遍历l2的cur2,和…...
Python Turtle模块详解与使用教程
Python Turtle模块详解与使用教程 引言 Python是一种广泛使用的编程语言,其简洁易读的语法使得它成为初学者学习编程的理想选择。而Turtle模块则是Python标准库中一个非常有趣且实用的图形绘制工具,特别适合用于教育和学习编程的基础知识。通过Turtle模…...

【PTA】4-2 树的同构【数据结构】
给定两棵树 T1 和 T2。如果 T1 可以通过若干次左右孩子互换就变成 T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。 图一…...

Node.js——fs模块-同步与异步
本文的分享到此结束,欢迎大家评论区一同讨论学习,下一篇继续分享Node.js的fs模块文件追加写入的学习。...

Java基于微信小程序的私家车位共享系统(附源码,文档)
博主介绍:✌stormjun、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&…...

vscode 创建 vue 项目时,配置文件为什么收缩到一起展示了?
一、前言 今天用 vue 官方脚手架创建工程,然后通过 vscode 打开项目发现,配置文件都被收缩在一起了。就像下面这样 这有点反直觉,他们应该是在同一层级下的,怎么会这样,有点好奇,但是打开资源管理查看&…...
PySpark任务提交
一般情况下,spark任务是用scala开发的,但是对于一些偏业务人员,或者是基于上手的来说python的API确实降低了开发前置条件的难度,首当其冲的就是能跳过Java和Scala需要的知识储备,但是在提交任务到集群的时候就很麻烦了…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...

剑指offer20_链表中环的入口节点
链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...

实战三:开发网页端界面完成黑白视频转为彩色视频
一、需求描述 设计一个简单的视频上色应用,用户可以通过网页界面上传黑白视频,系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观,不需要了解技术细节。 效果图 二、实现思路 总体思路: 用户通过Gradio界面上…...