【高等数学】3-2多元函数积分学
1. 二重积分
可以想象你有一块不规则的平面薄板,它在一个平面区域
上。二重积分
就是用来求这个薄板的质量(假设薄板的面密度函数是
)。
把区域
划分成许多非常小的小方块
(类似于把一块地划分成很多小格子),在每个小方块上,密度近似看成是一个常数
,然后把每个小方块的质量
加起来,就是整个薄板的质量。
1.1. 直角坐标系计算二重积分
步骤
1. 画出积分区域D的图形
2. 根据图形选择坐标系
3. 根据切片法选择积分顺序
4. 确定两个积分元素的上下限
5. 列式计算
例题
求,其中
是由两坐标轴及直线
所围成的闭区域。
1. 画出积分区域D的图形

2. 根据图形选择坐标系
| 直角坐标系 | 大多数情况 |
| 极坐标系 | D的图形跟圆相关 (如圆、扇形、圆环、椭圆) |
3. 根据切片法选择积分顺序
二重积分可以转化为两次定积分来计算,但是和
先积谁是有顺序的。
在直角坐标系下有两种情况:
型:垂直于
轴切片,先积
再积
积谁,就是把谁当变量,想象有一个垂直于轴的薄片在
轴方向上运动。
型就是先对薄片积分(有一条线在薄片上沿
轴运动,把这些线加起来,形成薄片;再把薄片加起来,也就是对
积分。
当薄片对应的两条分界线()都不是分段函数时,可以用
型

型:垂直于
轴切片,先积
再积
当薄片对应的两条分界线()都不是分段函数时,可以用
型

4. 确定两个积分元素的上下限
假如用型:
,
5. 列式计算
先积右边的积分,再积左边的积分
1.2. 极坐标系计算二重积分
步骤
1. 画出积分区域的图形
2. 根据图形选择坐标系

3. 根据切片法选择积分顺序
4. 确定两个积分元素的上下限
5. 列式计算
例题1
计算二重积分的值,其中
是由
及
所围成的第一象限内的封闭区域。
1. 画出积分区域的图形

2. 根据图形选择坐标系

3. 根据切片法选择积分顺序

4. 确定两个积分元素的上下限
5. 列式计算
例题2
求二重积分,其中
为圆形闭区域,
围成的区域。
1. 画出积分区域的图形

2. 根据图形选择坐标系

3. 根据切片法选择积分顺序
4. 确定两个积分元素的上下限
5. 列式计算
1.3. 交换积分次序
1.3.1. 直接考察
1.3.2. 交换后更好算
1.4. 积分区域对称
2. 三重积分
如果说二重积分是求平面薄板的质量,那么三重积分
就是求一个空间物体的质量(假设物体的体密度函数是
)。
把空间区域
划分成许多非常小的小立方体
(就像把一个大的立体空间划分成很多小积木块),在每个小立方体上,密度近似看成是一个常数
,然后把每个小立方体的质量
加起来,就是整个物体的质量。
3. 第一类曲线积分(对弧长的曲线积分)(无方向)
把一根弯曲的铁丝看成曲线
,它的线密度函数是
(如果是三维曲线就是
)。第一类曲线积分
就是求这根铁丝的质量。
我们把曲线
划分成很多小段
(就像把铁丝分成很多小短节),在每一小段上,密度近似看成是一个常数
,然后把每一小段的质量
加起来,就是整个铁丝的质量。
3.1. 基本计算
核心思想
转化为定积分;参数下限小于上限
步骤
1. 确定参数并代入
2. 求导并替换
相关文章:
【高等数学】3-2多元函数积分学
1. 二重积分 可以想象你有一块不规则的平面薄板,它在一个平面区域上。二重积分就是用来求这个薄板的质量(假设薄板的面密度函数是)。 把区域划分成许多非常小的小方块(类似于把一块地划分成很多小格子),在每个小方块上,密度近似看成是一个常数,然后把每个小方块的质量加…...
【传知代码】智慧医疗:纹理特征VS卷积特征
🍑个人主页:Jupiter. 🚀 所属专栏:传知代码 欢迎大家点赞收藏评论😊 目录 论文概述纹理特征和深度卷积特征算法流程数据预处理方法纹理特征提取深度卷积特征提取分类网络搭建代码复现BLS_Model.py文件——分类器搭建py…...
Python-创建并调用自定义文件中的模块/函数
背景:在Python编程中,我们常常需要创建自己的专属文件,以便帮助我们更高效,快捷地完成任务。那么在Python中我们怎么创建并调用自己文件中的模块/函数呢? 在Python中调用自定义文件,通常是指调用自己编写的Python模块…...
Kali Linux
起源与背景 Kali Linux是一个基于Debian的开源Linux发行版,专门为信息安全工作者和渗透测试员设计。它是由Offensive Security Ltd.开发和维护的,作为BackTrack的继承者而诞生。BackTrack是一个流行的安全测试发行版,但为了提供更好的支持和…...
DiffusionDet: Diffusion Model for Object Detection—用于对象检测的扩散模型论文解析
DiffusionDet: Diffusion Model for Object Detection—用于对象检测的扩散模型论文解析 这是一篇发表在CVPR 2023的一篇论文,因为自己本身的研究方向是目标跟踪,之前看了一点使用扩散模型进行多跟踪的论文,里面提到了DiffusionDet因此学习一…...
深度学习基础知识-编解码结构理论超详细讲解
编解码结构(Encoder-Decoder)是一种应用广泛且高效的神经网络架构,最早用于序列到序列(Seq2Seq)任务,如机器翻译、图像生成、文本生成等。随着深度学习的发展,编解码结构不断演变出多种模型变体…...
探讨Java深搜算法的学习笔记
大家好,我是 V 哥。深度优先搜索(DFS)是一种图遍历算法,它优先深入到某条路径的尽头,再回溯到前一个节点继续探索其他路径,直到找到目标或遍历完整个图。DFS的应用场景广泛,可以用于路径搜索、连…...
408——操作系统(持续更新)
文章目录 一、操作系统的概念及特征1.1 计算机系统的概念1.2 操作系统的基本特征 二、操作系统的功能和接口2.1 操作系统作为计算机资源的管理者2.2 操作系统作为用户和计算机硬件系统之间的接口2.3 操作系统实现对计算机资源的扩充 三、操作系统的发展和分类四、操作系统的运行…...
架构师之路-学渣到学霸历程-37
Nginx的热部署实验 本次分享的就是nginx的升级以及降级,实验中其实很多操作都需要理解,实际操作不难,但是需要全面理解这个动作,敲这个命令是用来干什么的?借着这个笔记可以试一下;go~! 1、ng…...
CSRF与SSRF
csrf(跨站请求伪造)的原理: csrf全称是跨站请求伪造(cross-site request forgery),也被称为one-click attack 或者 session riding scrf攻击利用网站对于用户网页浏览器的信任,劫持用户当前已登录的web应用程序,去执行分用户本意的操作。 利…...
RabbitMQ 存储机制
一、消息存储机制 不管是持久化的消息还是非持久化的消息都可以被写入到磁盘。持久化的消息在到达队列时就被写入到磁盘,非持久化的消息一般只保存在内存中,在内存吃紧的时候会被换入到磁盘中,以节省内存空间。这两种类型的消息的落盘处理都…...
【Java SE】类型转换
类型转换是将一个值从一种类型转换为另一种类型的过程。该过程如果从低精度数据类型转为高精度数据类型,则不会发生溢出并且总能成功,如果从高精度数据类型转为低精度数据类型,则会有信息丢失且可能失败。类型转换又可分为隐式转换和显式转换…...
JAVA:常见 JSON 库的技术详解
1、简述 在现代应用开发中,JSON(JavaScript Object Notation)已成为数据交换的标准格式。Java 提供了多种方式将对象转换为 JSON 或从 JSON 转换为对象,常见的库包括 Jackson、Gson 和 org.json。本文将介绍几种常用的 JSON 处理…...
Redis缓存击穿、雪崩、穿透解决方案
Redis 缓存击穿、雪崩、穿透解决方案 1、首先看看逻辑方面是否还有优化空间,正常流程查询redis中获取不到数据,则去数据库获取,但数据库查询并返回时,调用异步方法,将该数据存储进redis中,并设置一个较短的…...
C++ 优先算法——盛最多水的容器(双指针)
目录 题目:盛最多水的容器 1. 题目解析 2. 算法原理 3. 代码实现 题目:盛最多水的容器 1. 题目解析 题目截图: 如图所示: 水的高度一定是由较低的那条线的高度决定的:例1图中,是由7决定的,然后求出…...
blender 小车建模 建模 学习笔记
一、学习blender视频教程链接 案例4:狂奔的小车_建模_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1Bt4y1E7qn?p14&spm_id_from333.788.videopod.episodes&vd_sourced0ea58f1127eed138a4ba5421c577eb1 二、开始建模 (1)创…...
导出列表数据到Excel并下载
Java导出查询到的数据列表为Excel并下载 1.背景 工作中经常有需求,需要把列表的数据导出为Excel并下载。EasyExcel工具可以很好的实现这一需求。 2.实现流程 1.引入EasyExcel依赖包 <dependency><groupId>com.alibaba</groupId><artifactId…...
基于NVIDIA NIM平台实现盲人过马路的demo(一)
前言:利用NVIDIA NIM平台提供的大模型进行编辑,通过llama-3.2-90b-vision-instruct模型进行初步的图片检测 step1: 部署大模型到本地,引用所需要的库 import os import requests import base64 import cv2 import time from datetime import datetimestep2: 观看官方使用文…...
美格智能5G车规级通信模组:以连接+算力驱动智能化进阶
2023年3月,基于高通公司第二代骁龙汽车5G调制解调器及射频系统平台SA522M/SA525M,美格智能在德国纽伦堡嵌入式系统展上正式发布全新一代5G车规级C-V2X通信模组MA922系列,迅速引起行业和市场关注。随着5G高速网联逐步成为智能汽车标配…...
[MRCTF2020]PYWebsite1
如果输入的密钥是对的那么我们就直接跳转到flag.php页面 那么我们直接访问😎,他不带我们去我们自己去. 那就用XFF呗. 知识点: 定义:X-Forwarded-For是一个HTTP请求头字段,用于识别通过HTTP代理或负载均衡方式连接到W…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
在golang中如何将已安装的依赖降级处理,比如:将 go-ansible/v2@v2.2.0 更换为 go-ansible/@v1.1.7
在 Go 项目中降级 go-ansible 从 v2.2.0 到 v1.1.7 具体步骤: 第一步: 修改 go.mod 文件 // 原 v2 版本声明 require github.com/apenella/go-ansible/v2 v2.2.0 替换为: // 改为 v…...

