当前位置: 首页 > news >正文

使用onnxruntime-web 运行yolov8-nano推理

ONNX(Open Neural Network Exchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web 直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8 识别预览图片:

1. 跨平台兼容性

ONNX 是一种开放的格式,可以在不同的深度学习框架之间共享模型,如 PyTorch、TensorFlow、MXNet 和 Caffe2。这使得用户可以在一个框架中训练模型,然后在另一个框架中进行推理。

2. 模型标准化

ONNX 提供了一种标准化的模型表示,定义了操作符、数据类型和模型结构。这种标准化使得不同工具和库可以一致地理解和处理模型。

3. 高效性

ONNX 模型在推理时通常能够实现更高的效率,特别是在使用 ONNX Runtime 时。ONNX Runtime 是一个高性能的推理引擎,支持多种硬件加速(如 GPU、TPU 等)。

YOLOv8n 是 YOLOv8 系列中的 "nano" 版本,通常是指模型较小,参数较少,计算需求低。适合在资源受限的环境中使用,如移动设备和嵌入式系统。

首先需要下载这两个模型

yolov8n.onnx

nms-yolov8.onnx

https://huggingface.co/SpotLab/YOLOv8Detection/blob/3005c6751fb19cdeb6b10c066185908faf66a097/yolov8n.onnx

关于这两个模型可以多说两句,YOLOv8 和非极大值抑制(NMS)是目标检测任务中的两个关键组成部分。它们一起工作,以实现高效且精确的目标检测。以下是它们如何协同工作的详细说明:

1. YOLOv8 的工作原理

  • 目标检测:YOLOv8 模型接收输入图像,并通过其深度神经网络对图像进行处理,生成多个候选边界框和相应的置信度分数。这些边界框用于定位检测到的对象。
  • 多类别检测:模型还能为每个边界框预测对象的类别,通常是通过 softmax 函数生成类别概率。

2. NMS 的作用

  • 去除冗余检测:由于模型可能会为同一对象生成多个重叠的边界框,NMS 被用来过滤这些冗余的框。NMS 通过以下步骤工作:
    • 排序:根据置信度分数对所有预测框进行排序,选择置信度最高的框作为参考框。
    • 计算重叠:计算参考框与其他框之间的交并比(IoU)。
    • 阈值过滤:如果其他框与参考框的 IoU 超过设定的阈值,则认为这些框是冗余的,并将其移除。
    • 重复处理:对剩余框重复上述过程,直到所有框都被处理完。

3. 工作流程

  1. 输入图像:将图像输入到 YOLOv8 模型。
  2. 生成候选框:模型输出多个候选边界框和相应的置信度分数。
  3. 应用 NMS
    • 将所有候选框传递给 NMS。
    • NMS 处理并返回最终的边界框和类别标签,去除了冗余框,确保每个对象只保留一个最优框

使用python 代码进行检测的时候是这样用的

# 假设 model 是 YOLOv8 模型,image 是输入图像
boxes, scores, class_ids = model.predict(image)# 应用 NMS
final_boxes, final_scores, final_class_ids = nms(boxes, scores, threshold)# 结果可视化
for box, score, class_id in zip(final_boxes, final_scores, final_class_ids):draw_box(image, box, score, class_id)

在web项目里使用onnxruntime-web 要简单些

import React, { useState, useRef } from "react";
import cv from "@techstark/opencv-js";
import { Tensor, InferenceSession } from "onnxruntime-web";
import Loader from "./components/loader";
import { detectImage } from "./utils/detect";
import { download } from "./utils/download";
import "./style/App.css";const App = () => {const [session, setSession] = useState(null);const [loading, setLoading] = useState({ text: "Loading OpenCV.js", progress: null });const [image, setImage] = useState(null);const inputImage = useRef(null);const imageRef = useRef(null);const canvasRef = useRef(null);// Configsconst modelName = "yolov8n.onnx";const modelInputShape = [1, 3, 640, 640];const topk = 100;const iouThreshold = 0.45;const scoreThreshold = 0.25;// wait until opencv.js initializedcv["onRuntimeInitialized"] = async () => {const baseModelURL = `${process.env.PUBLIC_URL}/model`;// create sessionconst url =`${baseModelURL}/${modelName}`console.log(`url:${url}`)const arrBufNet = await download(url, // url["加载 YOLOv8", setLoading] // logger);const yolov8 = await InferenceSession.create(arrBufNet);const arrBufNMS = await download(`${baseModelURL}/nms-yolov8.onnx`, // url["加载 NMS model", setLoading] // logger);const nms = await InferenceSession.create(arrBufNMS);// warmup main modelsetLoading({ text: "model 预热...", progress: null });const tensor = new Tensor("float32",new Float32Array(modelInputShape.reduce((a, b) => a * b)),modelInputShape);await yolov8.run({ images: tensor });setSession({ net: yolov8, nms: nms });setLoading(null);};return (<div className="App">{loading && (<Loader>{loading.progress ? `${loading.text} - ${loading.progress}%` : loading.text}</Loader>)}<div className="header"><h1>onnxruntime-web 测试</h1></div><div className="content"><imgref={imageRef}src="#"alt=""style={{ display: image ? "block" : "none" }}onLoad={() => {detectImage(imageRef.current,canvasRef.current,session,topk,iouThreshold,scoreThreshold,modelInputShape);}}/><canvasid="canvas"width={modelInputShape[2]}height={modelInputShape[3]}ref={canvasRef}/></div><inputtype="file"ref={inputImage}accept="image/*"style={{ display: "none" }}onChange={(e) => {// handle next image to detectif (image) {URL.revokeObjectURL(image);setImage(null);}const url = URL.createObjectURL(e.target.files[0]); // create image urlimageRef.current.src = url; // set image sourcesetImage(url);}}/><div className="btn-container"><buttononClick={() => {inputImage.current.click();}}>打开图片</button>{image && (/* show close btn when there is image */<buttononClick={() => {inputImage.current.value = "";imageRef.current.src = "#";URL.revokeObjectURL(image);setImage(null);}}>关闭图片</button>)}</div></div>);
};export default App;
  • session 用于存储模型的推理会话。
  • loading 用于管理加载状态和进度。
  • image 存储用户选择的图像。
  • inputImageimageRefcanvasRef 是对 DOM 元素的引用。

上面加载的顺序是 在 OpenCV.js 加载完成后,异步加载 YOLOv8 和 NMS 模型。使用 download 函数从指定 URL 下载模型,并创建推理会话。模型有个预热的过程

创建一个形状为 const modelInputShape = [1, 3, 640, 640]  的空张量,并运行一次模型以进行预热,确保模型准备就绪。

页面使用 <canvas> 元素来绘制检测结果。

运行测试下效果

web使用onnx这个事给我很多启发,之前训练的一些模型完全可以在前端就实现推理

相关文章:

使用onnxruntime-web 运行yolov8-nano推理

ONNX&#xff08;Open Neural Network Exchange&#xff09;模型具有以下两个特点促成了我们可以使用onnxruntime-web 直接在web端上运行推理模型&#xff0c;为了让这个推理更直观&#xff0c;我选择了试验下yolov8 识别预览图片&#xff1a; 1. 跨平台兼容性 ONNX 是一种开…...

Gin框架html/vue前端使用hls.js播放/点播m3u8(hls)格式视频

说明 在web应用开发时遇到在线播放m3u8格式视频&#xff0c;由于m3u8是多分片视频&#xff0c;原生video标签无法直接播放&#xff0c;所以需要js对m3u8处理才能播放&#xff0c;网上有很多插件&#xff0c;这里我选择最近简单方法hls.js播放&#xff0c;引入一个js文件即可。…...

HarmonyOS 私仓搭建

1. HarmonyOS 私仓搭建 私仓搭建文档&#xff1a;https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-ohpm-repo-quickstart-V5   发布共享包[https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-har-publish-0000001597973129-V5]…...

Mybatis学习笔记(二)

八、多表联合查询 (一) 多表联合查询概述 在开发过程中单表查询不能满足项目需求分析功能&#xff0c;对于复杂业务来讲&#xff0c;关联的表有几张&#xff0c;甚至几十张并且表与表之间的关系相当复杂。为了能够实业复杂功能业务&#xff0c;就必须进行多表查询&#xff0c…...

Google“Big Sleep“人工智能项目发现真实软件漏洞

据Google研究人员称&#xff0c;该公司的一个人工智能项目足够聪明&#xff0c;能够自行发现现实世界中的软件漏洞&#xff1b;Google的人工智能项目最近在开源数据库引擎 SQLite 中发现了一个之前未知的可利用漏洞。 该公司随后在正式软件发布之前报告了这一漏洞&#xff0c;这…...

npm入门教程5:package.json

一、package.json 文件的作用 依赖管理&#xff1a;列出项目所依赖的包&#xff08;库&#xff09;及其版本&#xff0c;便于其他开发者或自动化工具快速安装和更新这些依赖。元数据描述&#xff1a;提供项目的描述、作者、许可证等元信息&#xff0c;有助于项目的管理和维护。…...

docker-高级(待补图)

文章目录 数据卷(Volume)介绍查看方法删除方法绑定方法匿名绑定具名绑定Bind Mount 数据卷管理 网络bridge(桥接模式 默认)HOST(主机模式)Nonecontainer(指定一个容器进行关联网络共享)自定义(推荐)docker network 命令创建网络docker network create 实例展示-自定义实例展示-…...

Qt 文件目录操作

Qt 文件目录操作 QDir 类提供访问系统目录结构 QDir 类提供对目录结构及其内容的访问。QDir 用于操作路径名、访问有关路径和文件的信息以及操作底层文件系统。它还可以用于访问 Qt 的资源系统。 Qt 使用“/”作为通用目录分隔符&#xff0c;与“/”在 URL 中用作路径分隔符…...

Pandas 数据清洗

1.数据清洗定义 数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况&#xff0c;如果要使数据分析更加准确&#xff0c;就需要对这些没有用的数据进行处理。 2.清洗空值 DataFrame.dropna(axis0, howany, threshN…...

IO学习笔记

当前需求&#xff0c;希望进行游戏可以保存游戏进度&#xff0c;可以将游戏的进度保存到一个文本文件&#xff0c;每一次打完游戏更新文本内容&#xff0c;下一次打游戏读取游戏进度&#xff0c;这里就涉及到两个知识IO流和File的知识。 File类 概述 java.io.File 类是文件…...

汇编练习-1

1、要求 练习要求引自《汇编语言-第4版》实验10.3(P209页) -编程&#xff0c;将data段中的数据&#xff0c;以10进制的形式显示出来 data segment dw 123,12666,1,8,3,38 data ends 2、实现代码(可惜没找到csdn对8086汇编显示方式) assume cs:codedata segmentdw 16 dup(0) ;除…...

初识二叉树( 二)

初识二叉树 二 实现链式结构二叉树前中后序遍历遍历规则代码实现 结点个数以及高度等层序遍历判断是否为完全二叉树 实现链式结构二叉树 ⽤链表来表示⼀棵二叉树&#xff0c;即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成&#xff0c;数据域和左右指针…...

AcWing1077-cnblog

问题背景 给定一个树形结构的图&#xff0c;每个节点代表一个地点&#xff0c;每个节点有一个守卫的代价。我们希望以最低的代价在树的节点上放置守卫&#xff0c;使得整棵树的所有节点都被监控。可以通过三种方式覆盖一个节点&#xff1a; 由父节点监控。由子节点监控。自己…...

五、SpringBoot3实战(1)

一、SpringBoot3介绍 1.1 SpringBoot3简介 SpringBoot版本&#xff1a;3.0.5 https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.introducing-spring-boot 到目前为止&#xff0c;你已经学习了多种配置Spring程序的方式…...

练习LabVIEW第三十三题

学习目标&#xff1a; 刚学了LabVIEW&#xff0c;在网上找了些题&#xff0c;练习一下LabVIEW&#xff0c;有不对不好不足的地方欢迎指正&#xff01; 第三十三题&#xff1a; 用labview编写一个判断素数的程序 开始编写&#xff1a; LabVIEW判断素数&#xff0c;首先要搞…...

如何在服务器端对PDF和图像进行OCR处理

介绍 今天我想和大家分享一个我在研究技术资料时发现的很好玩的东西——Tesseract。这不仅仅是一个普通的库&#xff0c;而是一个用C语言编写的OCR神器&#xff0c;能够识别一大堆不同国家的语言。我一直在寻找能够处理各种文档的工具&#xff0c;而Tesseract就像是给了我一把…...

Windows 下实验视频降噪算法 MeshFlow 详细教程

MeshFlow视频降噪算法 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow&#xff0c;它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field)&#xff0c;其运动矢量 (motion vectors) 仅在网格顶点 (m…...

Python入门:如何正确的控制Python异步并发量(制并发量的关键技巧与易错点解析)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 异步并发量控制 📒📝 Python异步并发简介📝 为什么要限制并发量🎈 资源管理🎈 服务稳定性📝 新手容易犯的错误🎈 忽略并发量限制🎈 错误设置并发量📝 设置并发量要注意的事情🎈 了解任务类型🎈 考虑系统资…...

qt QCheckBox详解

QCheckBox 是 Qt 框架中的一个控件&#xff0c;用于创建复选框&#xff0c;允许用户进行选择和取消选择。它通常用于表单、设置界面和任何需要用户选择的场景。 QCheckBox继承自QAbstractButton类&#xff0c;因此继承了按钮的特性。它表示一个复选框&#xff0c;用户可以通过…...

PAT甲级-1041 Be Unique

题目 题目大意 从一组数字中选出第一个唯一出现的数&#xff0c;输出该数。如果没有&#xff0c;则输出None。 思路 哈希的思想&#xff0c;将数值作为索引&#xff0c;对应该数值出现的次数&#xff0c;然后遍历数组即可。 注意第一个数字是指数字的个数&#xff0c;不是数…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器

一、原理介绍 传统滑模观测器采用如下结构&#xff1a; 传统SMO中LPF会带来相位延迟和幅值衰减&#xff0c;并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF)&#xff0c;可以去除高次谐波&#xff0c;并且不用相位补偿就可以获得一个误差较小的转子位…...

pycharm 设置环境出错

pycharm 设置环境出错 pycharm 新建项目&#xff0c;设置虚拟环境&#xff0c;出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...

Ubuntu系统多网卡多相机IP设置方法

目录 1、硬件情况 2、如何设置网卡和相机IP 2.1 万兆网卡连接交换机&#xff0c;交换机再连相机 2.1.1 网卡设置 2.1.2 相机设置 2.3 万兆网卡直连相机 1、硬件情况 2个网卡n个相机 电脑系统信息&#xff0c;系统版本&#xff1a;Ubuntu22.04.5 LTS&#xff1b;内核版本…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”&#xff0c;于是尝试整合图像识别与网页自动化技术&#xff0c;完成了这套模拟登录流程。核心思路是&#xff1a;截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

Python环境安装与虚拟环境配置详解

本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南&#xff0c;适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者&#xff0c;都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...