当前位置: 首页 > news >正文

使用onnxruntime-web 运行yolov8-nano推理

ONNX(Open Neural Network Exchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web 直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8 识别预览图片:

1. 跨平台兼容性

ONNX 是一种开放的格式,可以在不同的深度学习框架之间共享模型,如 PyTorch、TensorFlow、MXNet 和 Caffe2。这使得用户可以在一个框架中训练模型,然后在另一个框架中进行推理。

2. 模型标准化

ONNX 提供了一种标准化的模型表示,定义了操作符、数据类型和模型结构。这种标准化使得不同工具和库可以一致地理解和处理模型。

3. 高效性

ONNX 模型在推理时通常能够实现更高的效率,特别是在使用 ONNX Runtime 时。ONNX Runtime 是一个高性能的推理引擎,支持多种硬件加速(如 GPU、TPU 等)。

YOLOv8n 是 YOLOv8 系列中的 "nano" 版本,通常是指模型较小,参数较少,计算需求低。适合在资源受限的环境中使用,如移动设备和嵌入式系统。

首先需要下载这两个模型

yolov8n.onnx

nms-yolov8.onnx

https://huggingface.co/SpotLab/YOLOv8Detection/blob/3005c6751fb19cdeb6b10c066185908faf66a097/yolov8n.onnx

关于这两个模型可以多说两句,YOLOv8 和非极大值抑制(NMS)是目标检测任务中的两个关键组成部分。它们一起工作,以实现高效且精确的目标检测。以下是它们如何协同工作的详细说明:

1. YOLOv8 的工作原理

  • 目标检测:YOLOv8 模型接收输入图像,并通过其深度神经网络对图像进行处理,生成多个候选边界框和相应的置信度分数。这些边界框用于定位检测到的对象。
  • 多类别检测:模型还能为每个边界框预测对象的类别,通常是通过 softmax 函数生成类别概率。

2. NMS 的作用

  • 去除冗余检测:由于模型可能会为同一对象生成多个重叠的边界框,NMS 被用来过滤这些冗余的框。NMS 通过以下步骤工作:
    • 排序:根据置信度分数对所有预测框进行排序,选择置信度最高的框作为参考框。
    • 计算重叠:计算参考框与其他框之间的交并比(IoU)。
    • 阈值过滤:如果其他框与参考框的 IoU 超过设定的阈值,则认为这些框是冗余的,并将其移除。
    • 重复处理:对剩余框重复上述过程,直到所有框都被处理完。

3. 工作流程

  1. 输入图像:将图像输入到 YOLOv8 模型。
  2. 生成候选框:模型输出多个候选边界框和相应的置信度分数。
  3. 应用 NMS
    • 将所有候选框传递给 NMS。
    • NMS 处理并返回最终的边界框和类别标签,去除了冗余框,确保每个对象只保留一个最优框

使用python 代码进行检测的时候是这样用的

# 假设 model 是 YOLOv8 模型,image 是输入图像
boxes, scores, class_ids = model.predict(image)# 应用 NMS
final_boxes, final_scores, final_class_ids = nms(boxes, scores, threshold)# 结果可视化
for box, score, class_id in zip(final_boxes, final_scores, final_class_ids):draw_box(image, box, score, class_id)

在web项目里使用onnxruntime-web 要简单些

import React, { useState, useRef } from "react";
import cv from "@techstark/opencv-js";
import { Tensor, InferenceSession } from "onnxruntime-web";
import Loader from "./components/loader";
import { detectImage } from "./utils/detect";
import { download } from "./utils/download";
import "./style/App.css";const App = () => {const [session, setSession] = useState(null);const [loading, setLoading] = useState({ text: "Loading OpenCV.js", progress: null });const [image, setImage] = useState(null);const inputImage = useRef(null);const imageRef = useRef(null);const canvasRef = useRef(null);// Configsconst modelName = "yolov8n.onnx";const modelInputShape = [1, 3, 640, 640];const topk = 100;const iouThreshold = 0.45;const scoreThreshold = 0.25;// wait until opencv.js initializedcv["onRuntimeInitialized"] = async () => {const baseModelURL = `${process.env.PUBLIC_URL}/model`;// create sessionconst url =`${baseModelURL}/${modelName}`console.log(`url:${url}`)const arrBufNet = await download(url, // url["加载 YOLOv8", setLoading] // logger);const yolov8 = await InferenceSession.create(arrBufNet);const arrBufNMS = await download(`${baseModelURL}/nms-yolov8.onnx`, // url["加载 NMS model", setLoading] // logger);const nms = await InferenceSession.create(arrBufNMS);// warmup main modelsetLoading({ text: "model 预热...", progress: null });const tensor = new Tensor("float32",new Float32Array(modelInputShape.reduce((a, b) => a * b)),modelInputShape);await yolov8.run({ images: tensor });setSession({ net: yolov8, nms: nms });setLoading(null);};return (<div className="App">{loading && (<Loader>{loading.progress ? `${loading.text} - ${loading.progress}%` : loading.text}</Loader>)}<div className="header"><h1>onnxruntime-web 测试</h1></div><div className="content"><imgref={imageRef}src="#"alt=""style={{ display: image ? "block" : "none" }}onLoad={() => {detectImage(imageRef.current,canvasRef.current,session,topk,iouThreshold,scoreThreshold,modelInputShape);}}/><canvasid="canvas"width={modelInputShape[2]}height={modelInputShape[3]}ref={canvasRef}/></div><inputtype="file"ref={inputImage}accept="image/*"style={{ display: "none" }}onChange={(e) => {// handle next image to detectif (image) {URL.revokeObjectURL(image);setImage(null);}const url = URL.createObjectURL(e.target.files[0]); // create image urlimageRef.current.src = url; // set image sourcesetImage(url);}}/><div className="btn-container"><buttononClick={() => {inputImage.current.click();}}>打开图片</button>{image && (/* show close btn when there is image */<buttononClick={() => {inputImage.current.value = "";imageRef.current.src = "#";URL.revokeObjectURL(image);setImage(null);}}>关闭图片</button>)}</div></div>);
};export default App;
  • session 用于存储模型的推理会话。
  • loading 用于管理加载状态和进度。
  • image 存储用户选择的图像。
  • inputImageimageRefcanvasRef 是对 DOM 元素的引用。

上面加载的顺序是 在 OpenCV.js 加载完成后,异步加载 YOLOv8 和 NMS 模型。使用 download 函数从指定 URL 下载模型,并创建推理会话。模型有个预热的过程

创建一个形状为 const modelInputShape = [1, 3, 640, 640]  的空张量,并运行一次模型以进行预热,确保模型准备就绪。

页面使用 <canvas> 元素来绘制检测结果。

运行测试下效果

web使用onnx这个事给我很多启发,之前训练的一些模型完全可以在前端就实现推理

相关文章:

使用onnxruntime-web 运行yolov8-nano推理

ONNX&#xff08;Open Neural Network Exchange&#xff09;模型具有以下两个特点促成了我们可以使用onnxruntime-web 直接在web端上运行推理模型&#xff0c;为了让这个推理更直观&#xff0c;我选择了试验下yolov8 识别预览图片&#xff1a; 1. 跨平台兼容性 ONNX 是一种开…...

Gin框架html/vue前端使用hls.js播放/点播m3u8(hls)格式视频

说明 在web应用开发时遇到在线播放m3u8格式视频&#xff0c;由于m3u8是多分片视频&#xff0c;原生video标签无法直接播放&#xff0c;所以需要js对m3u8处理才能播放&#xff0c;网上有很多插件&#xff0c;这里我选择最近简单方法hls.js播放&#xff0c;引入一个js文件即可。…...

HarmonyOS 私仓搭建

1. HarmonyOS 私仓搭建 私仓搭建文档&#xff1a;https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-ohpm-repo-quickstart-V5   发布共享包[https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-har-publish-0000001597973129-V5]…...

Mybatis学习笔记(二)

八、多表联合查询 (一) 多表联合查询概述 在开发过程中单表查询不能满足项目需求分析功能&#xff0c;对于复杂业务来讲&#xff0c;关联的表有几张&#xff0c;甚至几十张并且表与表之间的关系相当复杂。为了能够实业复杂功能业务&#xff0c;就必须进行多表查询&#xff0c…...

Google“Big Sleep“人工智能项目发现真实软件漏洞

据Google研究人员称&#xff0c;该公司的一个人工智能项目足够聪明&#xff0c;能够自行发现现实世界中的软件漏洞&#xff1b;Google的人工智能项目最近在开源数据库引擎 SQLite 中发现了一个之前未知的可利用漏洞。 该公司随后在正式软件发布之前报告了这一漏洞&#xff0c;这…...

npm入门教程5:package.json

一、package.json 文件的作用 依赖管理&#xff1a;列出项目所依赖的包&#xff08;库&#xff09;及其版本&#xff0c;便于其他开发者或自动化工具快速安装和更新这些依赖。元数据描述&#xff1a;提供项目的描述、作者、许可证等元信息&#xff0c;有助于项目的管理和维护。…...

docker-高级(待补图)

文章目录 数据卷(Volume)介绍查看方法删除方法绑定方法匿名绑定具名绑定Bind Mount 数据卷管理 网络bridge(桥接模式 默认)HOST(主机模式)Nonecontainer(指定一个容器进行关联网络共享)自定义(推荐)docker network 命令创建网络docker network create 实例展示-自定义实例展示-…...

Qt 文件目录操作

Qt 文件目录操作 QDir 类提供访问系统目录结构 QDir 类提供对目录结构及其内容的访问。QDir 用于操作路径名、访问有关路径和文件的信息以及操作底层文件系统。它还可以用于访问 Qt 的资源系统。 Qt 使用“/”作为通用目录分隔符&#xff0c;与“/”在 URL 中用作路径分隔符…...

Pandas 数据清洗

1.数据清洗定义 数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况&#xff0c;如果要使数据分析更加准确&#xff0c;就需要对这些没有用的数据进行处理。 2.清洗空值 DataFrame.dropna(axis0, howany, threshN…...

IO学习笔记

当前需求&#xff0c;希望进行游戏可以保存游戏进度&#xff0c;可以将游戏的进度保存到一个文本文件&#xff0c;每一次打完游戏更新文本内容&#xff0c;下一次打游戏读取游戏进度&#xff0c;这里就涉及到两个知识IO流和File的知识。 File类 概述 java.io.File 类是文件…...

汇编练习-1

1、要求 练习要求引自《汇编语言-第4版》实验10.3(P209页) -编程&#xff0c;将data段中的数据&#xff0c;以10进制的形式显示出来 data segment dw 123,12666,1,8,3,38 data ends 2、实现代码(可惜没找到csdn对8086汇编显示方式) assume cs:codedata segmentdw 16 dup(0) ;除…...

初识二叉树( 二)

初识二叉树 二 实现链式结构二叉树前中后序遍历遍历规则代码实现 结点个数以及高度等层序遍历判断是否为完全二叉树 实现链式结构二叉树 ⽤链表来表示⼀棵二叉树&#xff0c;即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成&#xff0c;数据域和左右指针…...

AcWing1077-cnblog

问题背景 给定一个树形结构的图&#xff0c;每个节点代表一个地点&#xff0c;每个节点有一个守卫的代价。我们希望以最低的代价在树的节点上放置守卫&#xff0c;使得整棵树的所有节点都被监控。可以通过三种方式覆盖一个节点&#xff1a; 由父节点监控。由子节点监控。自己…...

五、SpringBoot3实战(1)

一、SpringBoot3介绍 1.1 SpringBoot3简介 SpringBoot版本&#xff1a;3.0.5 https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.introducing-spring-boot 到目前为止&#xff0c;你已经学习了多种配置Spring程序的方式…...

练习LabVIEW第三十三题

学习目标&#xff1a; 刚学了LabVIEW&#xff0c;在网上找了些题&#xff0c;练习一下LabVIEW&#xff0c;有不对不好不足的地方欢迎指正&#xff01; 第三十三题&#xff1a; 用labview编写一个判断素数的程序 开始编写&#xff1a; LabVIEW判断素数&#xff0c;首先要搞…...

如何在服务器端对PDF和图像进行OCR处理

介绍 今天我想和大家分享一个我在研究技术资料时发现的很好玩的东西——Tesseract。这不仅仅是一个普通的库&#xff0c;而是一个用C语言编写的OCR神器&#xff0c;能够识别一大堆不同国家的语言。我一直在寻找能够处理各种文档的工具&#xff0c;而Tesseract就像是给了我一把…...

Windows 下实验视频降噪算法 MeshFlow 详细教程

MeshFlow视频降噪算法 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow&#xff0c;它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field)&#xff0c;其运动矢量 (motion vectors) 仅在网格顶点 (m…...

Python入门:如何正确的控制Python异步并发量(制并发量的关键技巧与易错点解析)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 异步并发量控制 📒📝 Python异步并发简介📝 为什么要限制并发量🎈 资源管理🎈 服务稳定性📝 新手容易犯的错误🎈 忽略并发量限制🎈 错误设置并发量📝 设置并发量要注意的事情🎈 了解任务类型🎈 考虑系统资…...

qt QCheckBox详解

QCheckBox 是 Qt 框架中的一个控件&#xff0c;用于创建复选框&#xff0c;允许用户进行选择和取消选择。它通常用于表单、设置界面和任何需要用户选择的场景。 QCheckBox继承自QAbstractButton类&#xff0c;因此继承了按钮的特性。它表示一个复选框&#xff0c;用户可以通过…...

PAT甲级-1041 Be Unique

题目 题目大意 从一组数字中选出第一个唯一出现的数&#xff0c;输出该数。如果没有&#xff0c;则输出None。 思路 哈希的思想&#xff0c;将数值作为索引&#xff0c;对应该数值出现的次数&#xff0c;然后遍历数组即可。 注意第一个数字是指数字的个数&#xff0c;不是数…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...