Pandas 数据清洗
1.数据清洗定义
数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。
2.清洗空值
DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
删除包含空字段的行,可以使用 dropna() 方法。可以通过 isnull() 判断各个单元格是否为空。
(1)axis:默认为 0,表示逢空值剔除整行,如果设置参数 axis=1 表示逢空值去掉整列。
(2)how:默认为 'any' 如果一行(或一列)里任何一个数据有出现 NA 就去掉整行,如果设置 how='all' 一行(或列)都是 NA 才去掉这整行。
(3)thresh:设置需要多少非空值的数据才可以保留下来的。
subset:设置想要检查的列。如果是多个列,可以使用列名的 list 作为参数。
(4)inplace:如果设置 True,将计算得到的值直接覆盖之前的值并返回 None,修改源数据。
import pandas as pddf = pd.read_csv('property-data.csv')print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

3.指定空数据类型
import pandas as pdmissing_values = ["n/a", "na", "--"]
df = pd.read_csv('property-data.csv', na_values = missing_values)print (df['NUM_BEDROOMS'])
print (df['NUM_BEDROOMS'].isnull())

4.删除包含空数据的行
import pandas as pddf = pd.read_csv('property-data.csv')new_df = df.dropna()print(new_df.to_string())

5.使用 inplace = True 参数修改源数据 DataFrame
import pandas as pddf = pd.read_csv('property-data.csv')df.dropna(inplace = True)print(df.to_string())

6.移除 ST_NUM 列中字段值为空的行
import pandas as pddf = pd.read_csv('property-data.csv')df.dropna(subset=['ST_NUM'], inplace = True)print(df.to_string())

7.用fillna() 方法替换空字段
import pandas as pddf = pd.read_csv('property-data.csv')df.fillna(12345, inplace = True)print(df.to_string())

8.指定列来替换数据
import pandas as pddf = pd.read_csv('property-data.csv')df['PID'].fillna(12345, inplace = True)print(df.to_string())

9.使用 mean() 方法计算列的均值并替换空单元格
替换空单元格的方法是计算列的均值、中位数值或众数。Pandas使用 mean()、median() 和 mode() 方法计算列的均值(所有值加起来的平均值)、中位数值(排序后排在中间的数)和众数(出现频率最高的数)。
import pandas as pddf = pd.read_csv('property-data.csv')x = df["ST_NUM"].mean()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())

10.使用 median() 方法计算列的中位数并替换空单元格
import pandas as pddf = pd.read_csv('property-data.csv')x = df["ST_NUM"].median()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())

11.使用 mode() 方法计算列的众数并替换空单元格
import pandas as pddf = pd.read_csv('property-data.csv')x = df["ST_NUM"].mode()df["ST_NUM"].fillna(x, inplace = True)print(df.to_string())

12.清洗格式错误数据
数据格式错误的单元格会使数据分析变得困难,甚至不可能。可通过包含空单元格的行,或将列中所有单元格转换为相同格式数据。
import pandas as pd# 第三个日期格式错误
data = {"Date": ['2020/12/01', '2020/12/02' , '20201226'],"duration": [50, 40, 45]
}df = pd.DataFrame(data, index = ["day1", "day2", "day3"])df['Date'] = pd.to_datetime(df['Date'], format='mixed')print(df.to_string())

13.清洗错误数据
数据错误是常见情况,可以对错误的数据进行替换或移除。
import pandas as pdperson = {"name": ['Google', 'Kalika' , 'Taobao'],"age": [50, 40, 12345] # 12345 年龄数据是错误的
}df = pd.DataFrame(person)df.loc[2, 'age'] = 30 # 修改数据print(df.to_string())

14.设置条件语句
import pandas as pdperson = {"name": ['Google', 'Kalika' , 'Taobao'],"age": [50, 200, 12345]
}df = pd.DataFrame(person)for x in df.index:if df.loc[x, "age"] > 120:df.loc[x, "age"] = 120print(df.to_string())

15.将错误数据的行删除
import pandas as pdperson = {"name": ['Google', 'Kalika' , 'Taobao'],"age": [50, 40, 12345] # 12345 年龄数据是错误的
}df = pd.DataFrame(person)for x in df.index:if df.loc[x, "age"] > 120:df.drop(x, inplace = True)print(df.to_string())

16.清洗重复数据
清洗重复数据,可以使用 duplicated() 和 drop_duplicates() 方法。如果对应数据重复,duplicated() 会返回 True,否则返回 False。
import pandas as pdperson = {"name": ['Google', 'Kalika', 'Kalika', 'Taobao'],"age": [50, 40, 40, 23]
}df = pd.DataFrame(person)print(df.duplicated())

17.使用drop_duplicates() 方法删除重复数据
import pandas as pdpersons = {"name": ['Google', 'Kalika', 'Kalika', 'Taobao'],"age": [50, 40, 40, 23]
}df = pd.DataFrame(persons)df.drop_duplicates(inplace = True)print(df)

相关文章:
Pandas 数据清洗
1.数据清洗定义 数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。 2.清洗空值 DataFrame.dropna(axis0, howany, threshN…...
IO学习笔记
当前需求,希望进行游戏可以保存游戏进度,可以将游戏的进度保存到一个文本文件,每一次打完游戏更新文本内容,下一次打游戏读取游戏进度,这里就涉及到两个知识IO流和File的知识。 File类 概述 java.io.File 类是文件…...
汇编练习-1
1、要求 练习要求引自《汇编语言-第4版》实验10.3(P209页) -编程,将data段中的数据,以10进制的形式显示出来 data segment dw 123,12666,1,8,3,38 data ends 2、实现代码(可惜没找到csdn对8086汇编显示方式) assume cs:codedata segmentdw 16 dup(0) ;除…...
初识二叉树( 二)
初识二叉树 二 实现链式结构二叉树前中后序遍历遍历规则代码实现 结点个数以及高度等层序遍历判断是否为完全二叉树 实现链式结构二叉树 ⽤链表来表示⼀棵二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针…...
AcWing1077-cnblog
问题背景 给定一个树形结构的图,每个节点代表一个地点,每个节点有一个守卫的代价。我们希望以最低的代价在树的节点上放置守卫,使得整棵树的所有节点都被监控。可以通过三种方式覆盖一个节点: 由父节点监控。由子节点监控。自己…...
五、SpringBoot3实战(1)
一、SpringBoot3介绍 1.1 SpringBoot3简介 SpringBoot版本:3.0.5 https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.introducing-spring-boot 到目前为止,你已经学习了多种配置Spring程序的方式…...
练习LabVIEW第三十三题
学习目标: 刚学了LabVIEW,在网上找了些题,练习一下LabVIEW,有不对不好不足的地方欢迎指正! 第三十三题: 用labview编写一个判断素数的程序 开始编写: LabVIEW判断素数,首先要搞…...
如何在服务器端对PDF和图像进行OCR处理
介绍 今天我想和大家分享一个我在研究技术资料时发现的很好玩的东西——Tesseract。这不仅仅是一个普通的库,而是一个用C语言编写的OCR神器,能够识别一大堆不同国家的语言。我一直在寻找能够处理各种文档的工具,而Tesseract就像是给了我一把…...
Windows 下实验视频降噪算法 MeshFlow 详细教程
MeshFlow视频降噪算法 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (m…...
Python入门:如何正确的控制Python异步并发量(制并发量的关键技巧与易错点解析)
文章目录 📖 介绍 📖🏡 演示环境 🏡📒 异步并发量控制 📒📝 Python异步并发简介📝 为什么要限制并发量🎈 资源管理🎈 服务稳定性📝 新手容易犯的错误🎈 忽略并发量限制🎈 错误设置并发量📝 设置并发量要注意的事情🎈 了解任务类型🎈 考虑系统资…...
qt QCheckBox详解
QCheckBox 是 Qt 框架中的一个控件,用于创建复选框,允许用户进行选择和取消选择。它通常用于表单、设置界面和任何需要用户选择的场景。 QCheckBox继承自QAbstractButton类,因此继承了按钮的特性。它表示一个复选框,用户可以通过…...
PAT甲级-1041 Be Unique
题目 题目大意 从一组数字中选出第一个唯一出现的数,输出该数。如果没有,则输出None。 思路 哈希的思想,将数值作为索引,对应该数值出现的次数,然后遍历数组即可。 注意第一个数字是指数字的个数,不是数…...
【jvm】如何设置堆内存大小
目录 1. 使用命令行参数设置2. idea中设置3. 注意事项 1. 使用命令行参数设置 1.在Java命令后添加-Xms和-Xmx参数。2.-Xms参数用于设置JVM的初始堆内存大小,等价于-XX:InitialHeapSize。3.-Xmx参数用于设置JVM的最大堆内存大小,等价于-XX:MaxHeapSize。…...
kernel源码分析 do_msgsnd read_msg
笔者分析的源码是v 5.11.22 链接:msg.c - ipc/msg.c - Linux source code v5.11.22 - Bootlin do_msgsnd static long do_msgsnd(int msqid, long mtype, void __user *mtext,size_t msgsz, int msgflg) {struct msg_queue *msq;struct msg_msg *msg;int err;str…...
掌握 CTE 技巧,实现连续日期和月份的 SQL 报表统计
在 SQL 查询中,报表统计往往涉及到特定时间段内的数据汇总,如每日、每月的销售数据等。然而,面对缺少数据的日期或月份,传统 SQL 查询可能会直接跳过这些日期,使得输出的报表在视觉上并不连续。本文将展示如何利用 CTE…...
【表格解决问题】EXCEL行数过多,WPS如何按逐行分别打印多个纸张中
1 问题描述 如图:我的表格行数太多了。打印在一张纸上有点不太好看 2 解决方式 Step01:先选中你需要打印的部分,找到【页面】->【打印区域】->【设置打印区域】 Step02:先选中一行,找到【插入分页符】 Step0…...
Maven讲解从基础到高级配置与实践
一、基础认知 1.1 Maven 的主要作用 Maven 主要是用来管理 Java 项目构建流程的工具,包括以下几个方面: 依赖管理:通过 POM.xml 文件管理项目的外部依赖库,不同版本的依赖包可以通过 Maven 中央仓库自动下载,减少了…...
Vue3组件式父子传值
下面是使用 <script setup> 语法的 Vue 3 组件之间传值的示例。 示例 1:使用 Props 和 Emits 父组件 <template><div><h1>父组件</h1><ChildComponent :message="parentMessage" @reply="handleReply" /><p>…...
网页自动化测试和爬虫:Selenium库入门与进阶
网页自动化测试和爬虫:Selenium库入门与进阶 在现代Web开发和数据分析中,自动化测试和数据采集成为了开发流程中的重要部分。Python 的 Selenium 库是一种强大的工具,不仅用于网页自动化测试,也在网页爬虫中得到了广泛的应用。本…...
Cells 单元
Goto Data Grid 数据网格 Cells 单元 Content Alignment 内容对齐 显示数值的数据网格单元格会将其内容向右对齐。显示其他类型数据的单元格将其内容向左排列。若要更改单元格内容对齐方式,请处理 ColumnView.RowCellDefaultAlignment 事件。 Selection Modes 选…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
Linux链表操作全解析
Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
uniapp 字符包含的相关方法
在uniapp中,如果你想检查一个字符串是否包含另一个子字符串,你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的,但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...
