当前位置: 首页 > news >正文

评估 机器学习 回归模型 的性能和准确度

      回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。

那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。

接下来,和大家分享如何评估 回归模型 的性能和准确度。

一、 评估指标

1.1 均方误差(MSE)

      均方误差(Mean Squared Error, MSE衡量的是预测值与真实值之间的平均平方差异。MSE越小,模型的预测精度越高。由于平方误差将偏差放大,因此MSE对异常值(Outliers)比较敏感。

MSE=\frac{1}{n}\sum_{i=1}^{n}\left ( y_{i}-\hat{y}_{i} \right )^{2}

  •  y_{i} 是第  i 个样本的真实值。\hat{y}_{i} 是第  i 个样本的预测值。n 是样本总数。

from sklearn.metrics import mean_squared_error# y_true 是真实值数组,y_pred 是预测值数组
mse = mean_squared_error(y_true, y_pred)
print("Mean Squared Error (MSE):", mse)

1.2 均方根误差(RMSE)

        均方根误差(Root Mean Squared Error, RMSE是MSE的平方根,具有与原数据相同的量纲(单位),因此更容易解释。它同样对异常值敏感。 

RMSE=\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left ( y_{i}-\hat{y}_{i} \right )^{2}}

import numpy as nprmse = np.sqrt(mean_squared_error(y_true, y_pred))
print("Root Mean Squared Error (RMSE):", rmse)

1.3 平均绝对误差(MAE)

       平均绝对误差(Mean Absolute Error, MAE衡量的是预测值与真实值之间的平均绝对差异。相比MSE和RMSE,MAE对异常值不那么敏感。

 MAE=\frac{1}{n}\sum_{i=1}^{n} \left | y_{i}-\hat{y}_{i} \right |

from sklearn.metrics import mean_absolute_errormae = mean_absolute_error(y_true, y_pred)
print("Mean Absolute Error (MAE):", mae)

1.4. 决定系数(R²)

       决定系数衡量的是模型解释数据变异的比例。其取值范围在0到1之间,值越接近1,模型解释能力越强。如果R²为0,表示模型没有解释任何数据变异;如果R²为1,表示模型完美地解释了数据变异。 

 R^{2}=\frac{\sum_{i=1}^{n}\left ( y_{i}-\hat{y}_{i} \right )^{2}}{\sum_{i=1}^{n}\left ( y_{i}-\bar{y}_{i} \right )^{2}}

  • \bar{y}_{i}是真实值的平均值。

from sklearn.metrics import r2_scorer2 = r2_score(y_true, y_pred)
print("R² (Coefficient of Determination):", r2)

二、 评估图

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(1000, 1)
y = 4 + 3 * X + np.random.randn(1000, 1)# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)

2.1  真实值与预测值的散点图

我们可以通过散点图比较真实值与预测值,直观展示模型的预测效果。 

plt.scatter(X_test, y_test, color='black', label='Actual Values')
plt.scatter(X_test, y_test_pred, color='blue', label='Predicted Values')
plt.plot(X_test, y_test_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Actual vs Predicted Values')
plt.legend()
plt.show()

2.2  预测误差的分布图 

 预测误差(真实值与预测值的差异)的分布图可以帮助我们了解模型误差的分布情况。

errors = y_test - y_test_predplt.hist(errors, bins=20, edgecolor='black')
plt.xlabel('Prediction Error')
plt.ylabel('Frequency')
plt.title('Distribution of Prediction Errors')
plt.show()

2.3  学习曲线 

       习曲线展示了训练误差和验证误差随训练集大小的变化情况,有助于我们诊断模型是否存在欠拟合或过拟合问题。 

from sklearn.model_selection import learning_curvetrain_sizes, train_scores, test_scores = learning_curve(model, X, y, cv=5, scoring='neg_mean_squared_error')train_scores_mean = -train_scores.mean(axis=1)
test_scores_mean = -test_scores.mean(axis=1)plt.plot(train_sizes, train_scores_mean, label='Training error')
plt.plot(train_sizes, test_scores_mean, label='Validation error')
plt.ylabel('MSE')
plt.xlabel('Training set size')
plt.title('Learning Curves')
plt.legend()
plt.show()

       以上是详细介绍如何评估 回归模型 的性能和准确度,包括各个评估指标的原理、公式推导以及在Python中的实现。

参考:

机器学习模型评估的方法总结(回归、分类模型的评估)_分类模型评估方法-CSDN博客

模型评估指标总结(预测指标、分类指标、回归指标)_常见模型误差评价指标-CSDN博客

机器学习笔记:回归模型评估指标——MAE、MSE、RMSE、MAPE、R2等 - Hider1214 - 博客园

持续更新中。。。  

相关文章:

评估 机器学习 回归模型 的性能和准确度

回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。 那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。 接下来,和大家分享如何评估 回归模型 的性能和准…...

如何下载安装TestLink?

一、下载TestLink、XAMPP TestLink 下载 |SourceForge.net 备用:GitHub - TestLinkOpenSourceTRMS/testlink-code: TestLink开源测试和需求管理系统 下载XAMPP: Download XAMPP 注意:TestLink与PHP版本有关系,所以XA…...

基于SSM+微信小程序的订餐管理系统(点餐2)

👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM微信小程序的订餐管理系统实现了管理员和用户。管理端实现了 首页、个人中心、用户管理、菜品分类管理、菜品信息管理、订单信息管理、配送信息管理、菜品评价管理、订单投诉管理、…...

【C++排序 双指针】1996. 游戏中弱角色的数量|1996

本文涉及的基础知识点 排序 C算法:滑动窗口及双指针总结 本题其它解法 【C单调栈 排序】1996. 游戏中弱角色的数量|1996 LeetCode1996. 游戏中弱角色的数量 你正在参加一个多角色游戏,每个角色都有两个主要属性:攻击 和 防御 。给你一个…...

GESP4级考试语法知识(捕捉异常)

参考程序代码&#xff1a; #include <iostream> using namespace std;double divide(double a, double b) {if (b 0) {throw "Division by zero error"; // 抛出异常}return a / b; }int main() {double num1, num2;cout << "Enter two numbers:…...

HTML 基础标签——元数据标签 <meta>

文章目录 1. `<meta>` 标签概述2. 属性详解2.1 `charset` 属性2.2 `name` 属性2.3 `content` 属性2.4 `http-equiv` 属性3. 其他常见属性小结在 HTML 文档中,元数据标签 <meta> 是一种重要的标签,用于提供关于文档的信息,这些信息不直接显示在网页内容中,但对于…...

栈虚拟机和寄存器虚拟机,有什么不同?

本来这节内容是打算直接讲字节码指令的&#xff0c;但讲之前又必须得先讲指令集架构&#xff0c;而指令集架构又分为两种&#xff0c;一种是基于栈的&#xff0c;一种是基于寄存器的。 那不妨我们这节就单独来讲讲栈虚拟机和寄存器虚拟机&#xff0c;它们有什么不同&#xff0…...

Windows下基于fping进行批量IP测试

fping是Linux下一个很好用的IP测试工具&#xff0c;结合代码可以完成批量的IP测试&#xff0c;在网络调试中用途很广。本文是基于fping for Windows结合bat批处理&#xff0c;定制的测试脚本样例。 一、程序信息 本次测试使用fpingV5.1 for Windows版&#xff0c;版本信息如下…...

一款实用的Word文档图片转换与水印保护工具

目录 前言软件功能简介软件实现方法及关键代码 1. Word 文档转图片的实现2. 图片水印添加功能3. 生成数字指纹&#xff08;哈希值&#xff09;4. 保存图片信息到 JSON 文件 软件的实际使用场景软件操作指南 1. 下载和安装2. 操作流程 总结 1&#xff0c;前言 在日常办公和内…...

优化用于传感应用的衬底集成波导技术

ANSYS HFSS 是一款功能强大的电磁仿真软件&#xff0c;支持为微流体生物传感器应用设计和分析衬底集成波导 &#xff08;SIW&#xff09; 技术。它为快速设计优化、材料选择、系统集成和虚拟原型制作提供了一个强大的平台。借助 ANSYS HFSS&#xff0c;研究人员和工程师可以高效…...

Java多态特性的向上转型

Java的多态特性通过向上转型来实现。向上转型指的是将子类对象赋值给父类引用变量的操作。这样做的好处是可以使用父类引用变量来调用子类对象的方法。 例如&#xff0c;有一个父类Animal和一个子类Dog&#xff0c;可以这样进行向上转型&#xff1a; Animal animal new Dog(…...

C++ 判断语句的深入解析

C 判断语句的深入解析 C 是一种广泛使用的编程语言&#xff0c;以其高效性和灵活性著称。在 C 中&#xff0c;判断语句是控制程序流程的关键组成部分&#xff0c;它们允许程序根据不同的条件执行不同的代码路径。本文将深入探讨 C 中的判断语句&#xff0c;包括 if、else if、…...

15分钟学 Go 第 33 天:项目结构

第33天&#xff1a;项目结构 目标&#xff1a;了解Go项目的典型结构 在Go语言的开发中&#xff0c;项目结构的合理性直接影响着代码的可维护性、可扩展性和团队协作效率。本篇文章将深入探讨Go语言的典型项目结构&#xff0c;并提供实际示例代码和相关的流程图。 一、Go项目…...

conda迁移虚拟环境路径

方法一&#xff1a;使用软连接 ln -s ~/Anaconda3/envs /new/path/envs 方法二&#xff1a;修改~/.condarc文件 1.打开~/.condarc文件 #添加下面参数 envs_dirs: - /newpath/anaconda3/envs pkgs_dirs: - /newpath/anaconda3/pkgs 2. source ~/.bashrc 3.查看是否成功con…...

(八)JavaWeb后端开发——Tomcat

目录 1.Web服务器概念 2.tomcat 1.Web服务器概念 服务器&#xff1a;安装了服务器软件的计算机服务器软件&#xff1a;接收用户的请求&#xff0c;处理请求&#xff0c;做出响应web服务器软件&#xff1a;在web服务器软件中&#xff0c;可以部署web项目&#xff0c;让用户通…...

yocto中通常不直接修改提供的recipes的bb文件

不直接在 Yocto 官方提供的 recipe 中修改 通常是创建新的 metadata 和 recipe 来配置相关软件编译等过程 主要有以下几个原因&#xff1a; 1. 便于维护和升级 隔离自定义修改&#xff1a;Yocto 官方的 recipe 可能会随着版本更新而变化。如果直接修改官方 recipe&#xff0…...

智能座舱相关术语全解及多模态交互在智能座舱中的应用

文章目录 座舱相关术语全解1. 智能座舱2. UFS3. 多模态交互4. 3D虚拟引擎5. AR/VR6. GNSS7. TTS8. DPU9. 摄像头10. 屏幕/显示器11. 音频12. 无线连接13. 其他组件 多模态交互在智能座舱中有以下一些应用 座舱相关术语全解 1. 智能座舱 智能座舱&#xff08;intelligent cabi…...

【Fastjson反序列化漏洞:深入了解与防范】

一、Fastjson反序列化漏洞概述 Fastjson是一款高性能的Java语言JSON处理库&#xff0c;广泛应用于Web开发、数据交换等领域。然而&#xff0c;由于fastjson在解析JSON数据时存在安全漏洞&#xff0c;攻击者可以利用该漏洞执行任意代码&#xff0c;导致严重的安全威胁。 二、F…...

【OJ题解】C++实现反转字符串中的每个单词

&#x1f4b5;个人主页: 起名字真南 &#x1f4b5;个人专栏:【数据结构初阶】 【C语言】 【C】 【OJ题解】 题目要求&#xff1a;给定一个字符串 s &#xff0c;你需要反转字符串中每个单词的字符顺序&#xff0c;同时仍保留空格和单词的初始顺序。 题目链接: 反转字符串中的所…...

万字长文详解Hive聚合函数 grouping sets、cube、rollup原理、语法、案例和优化

目录 原理与语法 使用场景 多维度报表生成 复杂的数据分析 实际案例 原理与语法 与GROUPINGSETS的区别 实际案例 原理与语法 与CUBE的对比 实际案例 执行效率比较 优化建议 Hive提供了三个强大的高级聚合函数: GROUPING SETS 、 CUBE 和 ROLLUP ,用于处理复杂的…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

【Go语言基础【12】】指针:声明、取地址、解引用

文章目录 零、概述&#xff1a;指针 vs. 引用&#xff08;类比其他语言&#xff09;一、指针基础概念二、指针声明与初始化三、指针操作符1. &&#xff1a;取地址&#xff08;拿到内存地址&#xff09;2. *&#xff1a;解引用&#xff08;拿到值&#xff09; 四、空指针&am…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

Python爬虫(四):PyQuery 框架

PyQuery 框架详解与对比 BeautifulSoup 第一部分&#xff1a;PyQuery 框架介绍 1. PyQuery 是什么&#xff1f; PyQuery 是一个 Python 的 HTML/XML 解析库&#xff0c;它采用了 jQuery 的语法风格&#xff0c;让开发者能够用类似前端 jQuery 的方式处理文档解析。它的核心特…...

VASP软件在第一性原理计算中的应用-测试GO

VASP软件在第一性原理计算中的应用 VASP是由维也纳大学Hafner小组开发的一款功能强大的第一性原理计算软件&#xff0c;广泛应用于材料科学、凝聚态物理、化学和纳米技术等领域。 VASP的核心功能与应用 1. 电子结构计算 VASP最突出的功能是进行高精度的电子结构计算&#xff…...