评估 机器学习 回归模型 的性能和准确度
回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。
那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。
接下来,和大家分享如何评估 回归模型 的性能和准确度。
一、 评估指标
1.1 均方误差(MSE)
均方误差(Mean Squared Error, MSE)衡量的是预测值与真实值之间的平均平方差异。MSE越小,模型的预测精度越高。由于平方误差将偏差放大,因此MSE对异常值(Outliers)比较敏感。
-
是第
个样本的真实值。
是第
个样本的预测值。
是样本总数。
from sklearn.metrics import mean_squared_error# y_true 是真实值数组,y_pred 是预测值数组
mse = mean_squared_error(y_true, y_pred)
print("Mean Squared Error (MSE):", mse)
1.2 均方根误差(RMSE)
均方根误差(Root Mean Squared Error, RMSE)是MSE的平方根,具有与原数据相同的量纲(单位),因此更容易解释。它同样对异常值敏感。
import numpy as nprmse = np.sqrt(mean_squared_error(y_true, y_pred))
print("Root Mean Squared Error (RMSE):", rmse)
1.3 平均绝对误差(MAE)
平均绝对误差(Mean Absolute Error, MAE)衡量的是预测值与真实值之间的平均绝对差异。相比MSE和RMSE,MAE对异常值不那么敏感。
from sklearn.metrics import mean_absolute_errormae = mean_absolute_error(y_true, y_pred)
print("Mean Absolute Error (MAE):", mae)
1.4. 决定系数(R²)
决定系数(R²)衡量的是模型解释数据变异的比例。其取值范围在0到1之间,值越接近1,模型解释能力越强。如果R²为0,表示模型没有解释任何数据变异;如果R²为1,表示模型完美地解释了数据变异。
-
是真实值的平均值。
from sklearn.metrics import r2_scorer2 = r2_score(y_true, y_pred)
print("R² (Coefficient of Determination):", r2)
二、 评估图
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression# 生成示例数据
np.random.seed(0)
X = 2 * np.random.rand(1000, 1)
y = 4 + 3 * X + np.random.randn(1000, 1)# 拆分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)# 预测
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
2.1 真实值与预测值的散点图
我们可以通过散点图比较真实值与预测值,直观展示模型的预测效果。
plt.scatter(X_test, y_test, color='black', label='Actual Values')
plt.scatter(X_test, y_test_pred, color='blue', label='Predicted Values')
plt.plot(X_test, y_test_pred, color='red', linewidth=2, label='Regression Line')
plt.xlabel('X')
plt.ylabel('y')
plt.title('Actual vs Predicted Values')
plt.legend()
plt.show()

2.2 预测误差的分布图
预测误差(真实值与预测值的差异)的分布图可以帮助我们了解模型误差的分布情况。
errors = y_test - y_test_predplt.hist(errors, bins=20, edgecolor='black')
plt.xlabel('Prediction Error')
plt.ylabel('Frequency')
plt.title('Distribution of Prediction Errors')
plt.show()

2.3 学习曲线
习曲线展示了训练误差和验证误差随训练集大小的变化情况,有助于我们诊断模型是否存在欠拟合或过拟合问题。
from sklearn.model_selection import learning_curvetrain_sizes, train_scores, test_scores = learning_curve(model, X, y, cv=5, scoring='neg_mean_squared_error')train_scores_mean = -train_scores.mean(axis=1)
test_scores_mean = -test_scores.mean(axis=1)plt.plot(train_sizes, train_scores_mean, label='Training error')
plt.plot(train_sizes, test_scores_mean, label='Validation error')
plt.ylabel('MSE')
plt.xlabel('Training set size')
plt.title('Learning Curves')
plt.legend()
plt.show()
以上是详细介绍如何评估 回归模型 的性能和准确度,包括各个评估指标的原理、公式推导以及在Python中的实现。
参考:
机器学习模型评估的方法总结(回归、分类模型的评估)_分类模型评估方法-CSDN博客
模型评估指标总结(预测指标、分类指标、回归指标)_常见模型误差评价指标-CSDN博客
机器学习笔记:回归模型评估指标——MAE、MSE、RMSE、MAPE、R2等 - Hider1214 - 博客园
持续更新中。。。 
相关文章:
评估 机器学习 回归模型 的性能和准确度
回归 是一种常用的预测模型,用于预测一个连续因变量和一个或多个自变量之间的关系。 那么,最后评估 回归模型 的性能和准确度非常重要,可以帮助我们判断模型是否有效并进行改进。 接下来,和大家分享如何评估 回归模型 的性能和准…...
如何下载安装TestLink?
一、下载TestLink、XAMPP TestLink 下载 |SourceForge.net 备用:GitHub - TestLinkOpenSourceTRMS/testlink-code: TestLink开源测试和需求管理系统 下载XAMPP: Download XAMPP 注意:TestLink与PHP版本有关系,所以XA…...
基于SSM+微信小程序的订餐管理系统(点餐2)
👉文末查看项目功能视频演示获取源码sql脚本视频导入教程视频 1、项目介绍 基于SSM微信小程序的订餐管理系统实现了管理员和用户。管理端实现了 首页、个人中心、用户管理、菜品分类管理、菜品信息管理、订单信息管理、配送信息管理、菜品评价管理、订单投诉管理、…...
【C++排序 双指针】1996. 游戏中弱角色的数量|1996
本文涉及的基础知识点 排序 C算法:滑动窗口及双指针总结 本题其它解法 【C单调栈 排序】1996. 游戏中弱角色的数量|1996 LeetCode1996. 游戏中弱角色的数量 你正在参加一个多角色游戏,每个角色都有两个主要属性:攻击 和 防御 。给你一个…...
GESP4级考试语法知识(捕捉异常)
参考程序代码: #include <iostream> using namespace std;double divide(double a, double b) {if (b 0) {throw "Division by zero error"; // 抛出异常}return a / b; }int main() {double num1, num2;cout << "Enter two numbers:…...
HTML 基础标签——元数据标签 <meta>
文章目录 1. `<meta>` 标签概述2. 属性详解2.1 `charset` 属性2.2 `name` 属性2.3 `content` 属性2.4 `http-equiv` 属性3. 其他常见属性小结在 HTML 文档中,元数据标签 <meta> 是一种重要的标签,用于提供关于文档的信息,这些信息不直接显示在网页内容中,但对于…...
栈虚拟机和寄存器虚拟机,有什么不同?
本来这节内容是打算直接讲字节码指令的,但讲之前又必须得先讲指令集架构,而指令集架构又分为两种,一种是基于栈的,一种是基于寄存器的。 那不妨我们这节就单独来讲讲栈虚拟机和寄存器虚拟机,它们有什么不同࿰…...
Windows下基于fping进行批量IP测试
fping是Linux下一个很好用的IP测试工具,结合代码可以完成批量的IP测试,在网络调试中用途很广。本文是基于fping for Windows结合bat批处理,定制的测试脚本样例。 一、程序信息 本次测试使用fpingV5.1 for Windows版,版本信息如下…...
一款实用的Word文档图片转换与水印保护工具
目录 前言软件功能简介软件实现方法及关键代码 1. Word 文档转图片的实现2. 图片水印添加功能3. 生成数字指纹(哈希值)4. 保存图片信息到 JSON 文件 软件的实际使用场景软件操作指南 1. 下载和安装2. 操作流程 总结 1,前言 在日常办公和内…...
优化用于传感应用的衬底集成波导技术
ANSYS HFSS 是一款功能强大的电磁仿真软件,支持为微流体生物传感器应用设计和分析衬底集成波导 (SIW) 技术。它为快速设计优化、材料选择、系统集成和虚拟原型制作提供了一个强大的平台。借助 ANSYS HFSS,研究人员和工程师可以高效…...
Java多态特性的向上转型
Java的多态特性通过向上转型来实现。向上转型指的是将子类对象赋值给父类引用变量的操作。这样做的好处是可以使用父类引用变量来调用子类对象的方法。 例如,有一个父类Animal和一个子类Dog,可以这样进行向上转型: Animal animal new Dog(…...
C++ 判断语句的深入解析
C 判断语句的深入解析 C 是一种广泛使用的编程语言,以其高效性和灵活性著称。在 C 中,判断语句是控制程序流程的关键组成部分,它们允许程序根据不同的条件执行不同的代码路径。本文将深入探讨 C 中的判断语句,包括 if、else if、…...
15分钟学 Go 第 33 天:项目结构
第33天:项目结构 目标:了解Go项目的典型结构 在Go语言的开发中,项目结构的合理性直接影响着代码的可维护性、可扩展性和团队协作效率。本篇文章将深入探讨Go语言的典型项目结构,并提供实际示例代码和相关的流程图。 一、Go项目…...
conda迁移虚拟环境路径
方法一:使用软连接 ln -s ~/Anaconda3/envs /new/path/envs 方法二:修改~/.condarc文件 1.打开~/.condarc文件 #添加下面参数 envs_dirs: - /newpath/anaconda3/envs pkgs_dirs: - /newpath/anaconda3/pkgs 2. source ~/.bashrc 3.查看是否成功con…...
(八)JavaWeb后端开发——Tomcat
目录 1.Web服务器概念 2.tomcat 1.Web服务器概念 服务器:安装了服务器软件的计算机服务器软件:接收用户的请求,处理请求,做出响应web服务器软件:在web服务器软件中,可以部署web项目,让用户通…...
yocto中通常不直接修改提供的recipes的bb文件
不直接在 Yocto 官方提供的 recipe 中修改 通常是创建新的 metadata 和 recipe 来配置相关软件编译等过程 主要有以下几个原因: 1. 便于维护和升级 隔离自定义修改:Yocto 官方的 recipe 可能会随着版本更新而变化。如果直接修改官方 recipe࿰…...
智能座舱相关术语全解及多模态交互在智能座舱中的应用
文章目录 座舱相关术语全解1. 智能座舱2. UFS3. 多模态交互4. 3D虚拟引擎5. AR/VR6. GNSS7. TTS8. DPU9. 摄像头10. 屏幕/显示器11. 音频12. 无线连接13. 其他组件 多模态交互在智能座舱中有以下一些应用 座舱相关术语全解 1. 智能座舱 智能座舱(intelligent cabi…...
【Fastjson反序列化漏洞:深入了解与防范】
一、Fastjson反序列化漏洞概述 Fastjson是一款高性能的Java语言JSON处理库,广泛应用于Web开发、数据交换等领域。然而,由于fastjson在解析JSON数据时存在安全漏洞,攻击者可以利用该漏洞执行任意代码,导致严重的安全威胁。 二、F…...
【OJ题解】C++实现反转字符串中的每个单词
💵个人主页: 起名字真南 💵个人专栏:【数据结构初阶】 【C语言】 【C】 【OJ题解】 题目要求:给定一个字符串 s ,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序。 题目链接: 反转字符串中的所…...
万字长文详解Hive聚合函数 grouping sets、cube、rollup原理、语法、案例和优化
目录 原理与语法 使用场景 多维度报表生成 复杂的数据分析 实际案例 原理与语法 与GROUPINGSETS的区别 实际案例 原理与语法 与CUBE的对比 实际案例 执行效率比较 优化建议 Hive提供了三个强大的高级聚合函数: GROUPING SETS 、 CUBE 和 ROLLUP ,用于处理复杂的…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
Android屏幕刷新率与FPS(Frames Per Second) 120hz
Android屏幕刷新率与FPS(Frames Per Second) 120hz 屏幕刷新率是屏幕每秒钟刷新显示内容的次数,单位是赫兹(Hz)。 60Hz 屏幕:每秒刷新 60 次,每次刷新间隔约 16.67ms 90Hz 屏幕:每秒刷新 90 次,…...
无需布线的革命:电力载波技术赋能楼宇自控系统-亚川科技
无需布线的革命:电力载波技术赋能楼宇自控系统 在楼宇自动化领域,传统控制系统依赖复杂的专用通信线路,不仅施工成本高昂,后期维护和扩展也极为不便。电力载波技术(PLC)的突破性应用,彻底改变了…...
[QMT量化交易小白入门]-六十二、ETF轮动中简单的评分算法如何获取历史年化收益32.7%
本专栏主要是介绍QMT的基础用法,常见函数,写策略的方法,也会分享一些量化交易的思路,大概会写100篇左右。 QMT的相关资料较少,在使用过程中不断的摸索,遇到了一些问题,记录下来和大家一起沟通,共同进步。 文章目录 相关阅读1. 策略概述2. 趋势评分模块3 代码解析4 木头…...
