当前位置: 首页 > news >正文

软考:中间件

中间件

中间件是一类位于操作系统软件与用户应用软件之间的计算机软件,它包括一组服务,以便于运行在一台或多台机器上的多个软件通过网络进行交互
中间件的主要功能包括通信支持和应用支持

  • 通信支持为应用软件提供平台化的运行环境,屏蔽底层通信之间的接口差异,实现互操作。
  • 应用支持则为上层应用开发提供统一的平台和运行环境,并封装不同操作系统提供的API接口,向应用提供统一的标准接口,使应用的开发和运行与操作系统无关,实现其独立性。

中间件提供两种不同类型的支持

- 交互支持(通信功能,应用支持,为应用层不同服务之间提供互操作机制)
- 提供公共服务

负责客户机与服务器之间的连接和通信,以及客户机与应用层之间的高效率通信机制。
提供应用层不同服务之间的互操作机制,以及应用层与数据库之间的连接和控制机制。
提供多层架构的应用开发和运行的平台,以及应用开发框架,支持模块化的应用开发。
屏蔽硬件、操作系统、网络和数据库的差异。
提供应用的负载均衡和高可用性、安全机制与管理功能,以及交易管理机制,保证交易的一致性。
提供一组通用的服务去执行不同的功能,避免重复的工作和使应用之间可以协作。

嵌入式中间件

嵌入式中间件是一类在嵌入式系统中,位于嵌入式应用和操作系统之间的中间软件。其主要作用是对嵌入式应用屏蔽底层操作系统的异构性,提供网络通信、存储管理和数据处理等功能。网络通信功能实现系统的框架结构和基本的通信接口功能,存储管理功能实现数据跨平台、跨介质的存储接口功能,而数据处理功能则实现了分布式系统框架结构和事务间基本互操作的接口功能。嵌入式中间件的典型产品包括公共对象请求代理结构(CORBA)和数据分发服务(Data Distribution Service,DDS)。

消息中间件

  • 异步通信
  • 消息队列是保存消息的容器
  • 负责再系统之间传递消息,负责应用之间通信(异构),只需要调用MQ的API就可以通信,而不需要考虑底层系统和网络的复杂性
  • 能够支持点对点,发布订阅的模式

数据库是一种特殊的中间件

数据库管理系统(DBMS)通常不被认为是中间件,但它们确实在软件架构中扮演着类似中间件的角色。下面是对数据库和中间件的一些区分和联系:

  1. 功能定位不同

    • 数据库管理系统(DBMS):主要负责数据的存储、检索、更新和管理。它提供了数据的持久化存储、事务管理、数据完整性和安全性等功能。
    • 中间件:主要负责不同软件组件或系统之间的通信、数据传输、服务协调等。它提供了跨网络的通信能力、数据格式转换、事务管理、负载均衡等功能。
  2. 作用范围不同

    • 数据库:专注于数据层面的操作和管理,如SQL查询、数据索引、备份与恢复等。
    • 中间件:关注于系统间的交互和集成,如远程过程调用(RPC)、消息队列、事件总线等。
  3. 技术实现不同

    • 数据库:通常基于关系模型或非关系模型,使用SQL或NoSQL语言进行数据操作。
    • 中间件:可能基于各种通信协议和数据交换格式,如SOAP、REST、AMQP等。
  4. 在软件架构中的位置

    • 数据库:通常位于应用层和数据存储层之间,作为数据持久化和访问的接口。
    • 中间件:位于客户端应用和服务器端应用之间,或者在多个服务器端应用之间,作为通信和集成的桥梁。

尽管数据库和中间件在功能和实现上有所不同,但在某些情况下,数据库可以被视为一种特殊的中间件,特别是在处理数据密集型应用时。例如,数据库可以提供数据访问的中间层服务,使得应用层可以通过数据库API与底层数据存储进行交互。

总的来说,数据库和中间件都是软件架构中的重要组成部分,它们各自解决不同的问题,但也可以相互配合,共同构建复杂的软件系统。
在这里插入图片描述

相关文章:

软考:中间件

中间件 中间件是一类位于操作系统软件与用户应用软件之间的计算机软件,它包括一组服务,以便于运行在一台或多台机器上的多个软件通过网络进行交互。 中间件的主要功能包括通信支持和应用支持。 通信支持为应用软件提供平台化的运行环境,屏蔽…...

银行家算法(Banker’s Algorithm)

银行家算法(Banker’s Algorithm)是计算机操作系统中一种避免死锁发生的著名算法。该算法由艾兹格迪杰斯特拉(Edsger Dijkstra)在1965年为T.H.E系统设计,其核心理念基于银行借贷系统的分配策略,以确保系统的…...

用魔数严谨的判别文件类型:杜绝上传风险

在文件处理和管理中,确定文件的类型是一个常见的需求。虽然文件扩展名可以提供一些信息,但并不总是可靠的。魔数(Magic Numbers)是一种更为准确的方法,通过检查文件开头的特定字节序列来识别文件类型。本文将介绍如何在…...

【MacOS实操】如何基于SSH连接远程linux服务器

MacOS上远程连接linux服务器,可以使用ssh命令pem秘钥文件连接。 一、准备pem秘钥文件 如果已经有pem文件,则跳过这一步。如果手上有ppk文件,那么需要先转换为pem文件。 macOS 的默认 SSH 客户端不支持 PPK 格式,你需要将 PPK 文…...

EXPLAIN 针对性优化 SQL 查询

在数据库管理和应用中,高效的 SQL 查询是确保系统性能的关键。随着数据量的不断增长和业务需求的日益复杂,优化 SQL 查询变得尤为重要。而 EXPLAIN 命令是一种强大的工具,可以帮助我们深入了解 SQL 查询的执行计划,从而进行有针对…...

MR30分布式IO:石化行业的智能化革新

在浩瀚的工业领域中,石化行业如同一座巨大的化工厂,将自然界的原始资源转化为人们日常生活中不可或缺的各种产品。然而,随着生产规模的扩大和工艺复杂度的提升,石化行业面临着前所未有的挑战:如何在保证生产效率的同时…...

linux图形化X窗口

【linux图形化协议框架】 X、X11系统:X协议,X服务器,窗口管理器,X客户端(客户端库Xcb,Xlib库等),输入、绘制 Wayland系统:Wayland 协议,合成器、客户端&#…...

练习LabVIEW第三十五题

学习目标: 刚学了LabVIEW,在网上找了些题,练习一下LabVIEW,有不对不好不足的地方欢迎指正! 第三十五题: 使用labview模拟一个3-8译码器 开始编写: 用LabVIEW做3-8译码器首先要知道它是个啥…...

Decision Tree Regressor (决策树) --- 论文实战

一、前言 在《机器学习论文复现实战---linear regression》中通过Pearson 相关性分析,去除了2个高相关性特征 "PN" 和 "AN" ,数据维度变为890*25。(数据集地址) 这里我们不做前期处理,直接就将数据放入 DecisionTreeRegressor 模型中进行训练了。 二…...

三层交换技术,eNSP实验讲解

三层交换技术,eNSP实验讲解 一、简要介绍1、概念2、工作原理3、优点4、应用场景5、与路由器的区别 二、eNSP仿真实验1、步骤一:创建连接,明确参数。2、步骤二:设置PC1和PC2参数3、步骤三:配置交换机,通过命…...

单链表OJ题(3):合并两个有序链表、链表分割、链表的回文结构

目录 一、合并两个有序链表 二、链表分割 三、链表的回文结构 u解题的总体思路: 合并两个有序链表:首先创建新链表的头节点(哨兵位:本质上是占位子),为了减少一些判断情况,简化操作。然后我们…...

研究了100个小绿书十万加之后,我们发现2024小绿书独家秘籍就是:在于“先抄后超,持续出摊,量大管饱”!

小绿书作为今年最大的红利,很多人已经吃到了螃蟹。看——: 今天我们总结了100个10万爆款,我们发现要在这个平台上脱颖而出,找到属于自己的方法尤为重要。在这里分享一个主题——小绿书的秘诀就是“先抄后超,持续出摊”…...

Java 中 HashMap集合使用

目录 一. HashMap概述 二. HashMap特点 三. HashMap构造方法 四. HashMap的常用方法 五. 使用注意事项 六. 代码示例 一. HashMap概述 HashMap 是 Java 中的一个非常重要的类,它实现了 Map 接口,用于存储键值对(key-value pairs&#…...

#渗透测试#SRC漏洞挖掘# 信息收集-Shodan进阶之Mongodb未授权访问

免责声明 本教程仅为合法的教学目的而准备,严禁用于任何形式的违法犯罪活动及其他商业行为,在使用本教程前,您应确保该行为符合当地的法律法规,继续阅读即表示您需自行承担所有操作的后果,如有异议,请立即停…...

平台化运营公司如何在创业市场招商

在当今商业环境中,平台化运营的公司正成为推动经济发展的重要力量。对于这类公司而言,在创业市场招商意义重大。 平台化运营公司具有独特特点:通过搭建开放共享平台连接供需双方,实现资源优化配置与价值创造。比如电子商务平台、社…...

飞书API-获取tenant_access_token

1.在飞书工作台创建应用,跳到开发者后台,选创建企业自建应用 2.设置并发布应用 必须要发布应用才可以开始使用了!!! 3.调用获取token的API 参考链接: 开发文档 - 飞书开放平台https://open.feishu.cn/do…...

(新)docker desktop镜像迁移

背景 docker desktop默认安装在系统c盘,久而久之随着镜像拉取的越多,系统盘占用则越来越大。现有的网络资源关于docker desktop迁移都是旧版本的,即4.30版本之前。在4.30版本及以后,在运行wsl -l -v时只有docker-desktop只有这一项…...

单向函数、单向陷门函数、困难问题

1、单向函数 设函数 yf(x) , 对于给定的x,计算出y很容易;对于给定的y,计算出x很难。 2、单向陷门函数 设函数 yf(x) ,且f有陷门, 对于给定的x,计算出y很容易;对于给定的y&#…...

MYSQL 小猫钓鱼 - 猫王争霸之〈主从设计〉

在美丽的森林中,小猫们的钓鱼大赛依旧热闹非凡,而 “猫王争霸” 的竞争也越来越激烈。随着时间的推移,越来越多的动物们开始关注这场有趣的比赛,对鱼表数据的查询请求也急剧增加。 一、请求压力剧增 花猫看着鱼表发愁道&#xf…...

arcgis坐标系问题

2000数据框的工程只能打开2000坐标系的矢量数据和栅格数据(影像图),如果打开80的数据则会投影错误,出现较大偏差。 解决方案:80数据框打开80数据,2000数据库打开2000数据。...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明: 想象一下,你正在用eNSP搭建一个虚拟的网络世界,里面有虚拟的路由器、交换机、电脑(PC)等等。这些设备都在你的电脑里面“运行”,它们之间可以互相通信,就像一个封闭的小王国。 但是&#…...

synchronized 学习

学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错

出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上&#xff0c;所以报错&#xff0c;到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本&#xff0c;cu、torch、cp 的版本一定要对…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...