c++ 贪心算法
概念
贪心算法是一种在每一步选择中都选择当前最优解的算法策略。这种方法适用于某些特定问题,可以通过局部最优选择构建全局最优解。
特点
- 局部最优选择:每一步选择都选择当前看起来最优的解。
 - 无后效性:当前选择不会影响未来选择的可能性。
 - 可行性:必须确保每一步的选择是可行的。
 
优缺点
优点
- 简单易懂:贪心算法通常比其他算法(如动态规划)更简单,逻辑清晰,易于实现和理解。
 - 高效:在适合的场景下,贪心算法通常具有较低的时间复杂度,能在较短时间内找到解。
 - 节省空间:由于贪心算法在求解过程中不需要存储大量的中间结果,相对节省内存空间。
 - 适用性广:对于一些特定类型的问题,贪心算法能够有效地找到全局最优解。
 
缺点
- 不适用于所有问题:贪心算法并不适用于所有问题,有些问题不能通过局部最优解得到全局最优解。
 - 缺乏最优性保证:在某些情况下,贪心策略可能导致错误的结果,即找到的解不是最优解。例如,在 0-1 背包问题中,简单的贪心算法可能无法得到最优解。
 - 难以分析:对于一些复杂的问题,判断贪心选择是否能导致全局最优解需要进行深入分析和证明。
 - 局部最优陷阱:有时,贪心选择看似合理,但最终结果却不理想,导致程序错误或效率低下。
 
应用场景
-  
活动选择问题
 -  
最小生成树
 -  
单源最短路径
 -  
背包问题
 -  
Huffman 编码
 
活动选择问题
问题描述:给定一组活动,选择不重叠的活动以最大化活动数量。
#include <iostream>
#include <vector>
#include <algorithm>struct Activity {int start;int end;
};bool compare(Activity a1, Activity a2) {return a1.end < a2.end;
}void activitySelection(std::vector<Activity>& activities) {std::sort(activities.begin(), activities.end(), compare);std::cout << "选择的活动: \n";int lastEndTime = -1;for (const auto& activity : activities) {if (activity.start >= lastEndTime) {std::cout << "活动(" << activity.start << ", " << activity.end << ")\n";lastEndTime = activity.end;}}
}int main() {std::vector<Activity> activities = {{1, 3}, {2, 5}, {4, 6}, {6, 7}, {5, 8}, {8, 9}};activitySelection(activities);return 0;
}
 
最小生成树(Kruskal 算法)
问题描述:给定一个带权无向图,找到最小生成树。
#include <iostream>
#include <vector>
#include <algorithm>struct Edge {int src, dest, weight;
};bool compare(Edge e1, Edge e2) {return e1.weight < e2.weight;
}class DisjointSet {
public:DisjointSet(int n) : parent(n), rank(n, 0) {for (int i = 0; i < n; ++i) parent[i] = i;}int find(int u) {if (u != parent[u])parent[u] = find(parent[u]);return parent[u];}void unionSets(int u, int v) {int rootU = find(u);int rootV = find(v);if (rootU != rootV) {if (rank[rootU] < rank[rootV]) {parent[rootU] = rootV;} else if (rank[rootU] > rank[rootV]) {parent[rootV] = rootU;} else {parent[rootV] = rootU;rank[rootU]++;}}}
private:std::vector<int> parent;std::vector<int> rank;
};void kruskal(int n, std::vector<Edge>& edges) {std::sort(edges.begin(), edges.end(), compare);DisjointSet ds(n);std::cout << "最小生成树的边:\n";for (const auto& edge : edges) {if (ds.find(edge.src) != ds.find(edge.dest)) {ds.unionSets(edge.src, edge.dest);std::cout << edge.src << " - " << edge.dest << " (权重: " << edge.weight << ")\n";}}
}int main() {int n = 4; // 顶点数std::vector<Edge> edges = {{0, 1, 10}, {0, 2, 6}, {0, 3, 5},{1, 3, 15}, {2, 3, 4}};kruskal(n, edges);return 0;
}
 
单源最短路径(Dijkstra 算法)
问题描述:在带权图中,找到从源节点到其他所有节点的最短路径。
#include <iostream>
#include <vector>
#include <queue>
#include <climits>typedef std::pair<int, int> Pair; // (距离, 节点)void dijkstra(int src, const std::vector<std::vector<Pair>>& graph) {int n = graph.size();std::vector<int> dist(n, INT_MAX);dist[src] = 0;std::priority_queue<Pair, std::vector<Pair>, std::greater<Pair>> pq;pq.push({0, src}); // (距离, 节点)while (!pq.empty()) {int u = pq.top().second;pq.pop();for (const auto& edge : graph[u]) {int v = edge.first;int weight = edge.second;if (dist[u] + weight < dist[v]) {dist[v] = dist[u] + weight;pq.push({dist[v], v});}}}std::cout << "从源节点 " << src << " 到其他节点的最短路径:\n";for (int i = 0; i < n; ++i) {std::cout << "到节点 " << i << " 的距离: " << dist[i] << "\n";}
}int main() {std::vector<std::vector<Pair>> graph = {{{1, 1}, {2, 4}},{{2, 2}, {3, 6}},{{3, 3}},{}};dijkstra(0, graph);return 0;
}
 
0-1 背包问题(动态规划与贪心结合)
问题描述:给定一组物品,每个物品有重量和价值,目标是最大化背包内物品的总价值。
#include <iostream>
#include <vector>
#include <algorithm>struct Item {int value;int weight;
};bool compare(Item a, Item b) {return (double)a.value / a.weight > (double)b.value / b.weight;
}double fractionalKnapsack(std::vector<Item>& items, int capacity) {std::sort(items.begin(), items.end(), compare);double totalValue = 0.0;for (const auto& item : items) {if (capacity == 0) break;if (item.weight <= capacity) {capacity -= item.weight;totalValue += item.value;} else {totalValue += item.value * ((double)capacity / item.weight);capacity = 0;}}return totalValue;
}int main() {std::vector<Item> items = {{60, 10}, {100, 20}, {120, 30}};int capacity = 50;double maxValue = fractionalKnapsack(items, capacity);std::cout << "最大价值: " << maxValue << "\n";return 0;
}
 
Huffman 编码
问题描述:给定一组字符及其频率,构建最优的前缀编码。
#include <iostream>
#include <queue>
#include <unordered_map>
#include <vector>struct Node {char ch;int freq;Node* left;Node* right;Node(char character, int frequency) : ch(character), freq(frequency), left(nullptr), right(nullptr) {}
};struct Compare {bool operator()(Node* l, Node* r) {return l->freq > r->freq;}
};void printCodes(Node* root, std::string str) {if (!root) return;if (!root->left && !root->right) {std::cout << root->ch << ": " << str << "\n";}printCodes(root->left, str + "0");printCodes(root->right, str + "1");
}void huffmanCoding(const std::unordered_map<char, int>& freqMap) {std::priority_queue<Node*, std::vector<Node*>, Compare> minHeap;for (const auto& pair : freqMap) {minHeap.push(new Node(pair.first, pair.second));}while (minHeap.size() > 1) {Node* left = minHeap.top(); minHeap.pop();Node* right = minHeap.top(); minHeap.pop();Node* newNode = new Node('$', left->freq + right->freq);newNode->left = left;newNode->right = right;minHeap.push(newNode);}Node* root = minHeap.top();std::cout << "Huffman 编码:\n";printCodes(root, "");
}int main() {std::unordered_map<char, int> freqMap = {{'a', 5}, {'b', 9}, {'c', 12}, {'d', 13}, {'e', 16}, {'f', 45}};huffmanCoding(freqMap);return 0;
}
 
总结
贪心算法虽然简单易懂,但并不是所有问题都适用。在实现贪心算法时,需要确保每一步的局部选择能够导向全局最优解。
相关文章:
c++ 贪心算法
概念 贪心算法是一种在每一步选择中都选择当前最优解的算法策略。这种方法适用于某些特定问题,可以通过局部最优选择构建全局最优解。 特点 局部最优选择:每一步选择都选择当前看起来最优的解。无后效性:当前选择不会影响未来选择的可能性…...
15分钟学 Go 第 35 天:Go的性能调优 (7000字详细教程)
第35天:Go的性能调优 目标:理解Go语言中基本的性能优化,学习如何分析和提高Go程序的执行效率。 一、性能调优概述 性能调优是软件开发中的一个重要环节,它可以确保程序在资源有限的环境下高效运行。Go语言天生具备高效的性能表现…...
6、显卡品牌分类介绍:技嘉 - 计算机硬件品牌系列文章
技嘉科技是一家以主板、显卡在业界缔造无以撼动的地位的科技公司,其核心理念是「技术创新、质量稳定」的高标准。技嘉专注于关键技术研发,其经营范围涵盖家用、商用、电竞等多元科技领域。通过应用突破性的专利技术,技…...
Redis数据类型——针对实习面试
目录 Redis数据类型Redis常用的数据类型有哪些?String类型可以用于哪些场景?Set类型可以用于哪些场景?Bitmaps类型可以用于哪些场景?HyperLogLog类型可以用于哪些场景?Hash类型与Set类型有什么区别?Hash类型…...
roberta融合模型创新中文新闻文本标题分类
项目源码获取方式见文章末尾! 600多个深度学习项目资料,快来加入社群一起学习吧。 《------往期经典推荐------》 项目名称 1.【基于CNN-RNN的影像报告生成】 2.【卫星图像道路检测DeepLabV3Plus模型】 3.【GAN模型实现二次元头像生成】 4.【CNN模型实现…...
《密码系统设计》实验二 4-6学时
文章目录 《密码系统设计》实验实验项目实验二 密码算法实现4-6 学时实践要求(30 分)1. 定义宏2. 使用特定的源文件3. 编译MIRACL库4. 配置KCM和Comba方法5. 编译和运行MEX工具6. 使用config.c工具总结1. 准备环境2. 下载和解压MIRACL库3. 定义宏4. 使用…...
Zypher Network:全栈式 Web3 游戏引擎,服务器抽象叙事的引领者
近期,《黑神话:悟空》的爆火不仅让 AAA 游戏重回焦点,也引发了玩家与开发者的热议。Web2 游戏的持续成功导致部分 Web3 玩家们的倒戈,对比之下 Web3 游戏存在生命周期短且商业模式难以明确的问题,尤其在当前加密市场环…...
2025生物发酵展(济南)为生物制造产业注入新活力共谱行业新篇章
2025第十四届国际生物发酵展将于3月3-5日济南盛大举办!产业链逐步完整,展会面积再创历史新高,展览面积较上届增涨至60000平方米,专业观众40000,品牌展商800,同期活动会议增加至50场,展会同期将举…...
git入门教程14:Git与其他工具的集成
一、Git与代码托管平台的集成 GitHub 集成方式: 在GitHub上创建或克隆仓库。在本地使用Git命令进行代码提交和推送(如git push)。GitHub提供Web界面进行代码浏览、协作和持续集成配置。 特点: 支持Pull Request,便于代…...
在Zetero中调用腾讯云API的输入密钥的问题
也是使用了Translate插件了,但是需要调用腾讯云翻译,一直没成功。 第一步就是,按照这上面方法做:百度、阿里、腾讯、有道各平台翻译API申请教程 之后就是:Zotero PDF translat翻译:申请腾讯翻译接口 主要是…...
【AD】1-8 AD24软件工程创建
1.点击文件,新建项目 2.如图进行设置工程名称和文件路径 3.创建原理图库及原理图,并保存 4.新建PCB库及PCB,并保存 5.单击右键工程保存 注意:先新建工程,在新建文件...
RT-Thread学习
文章目录 前言一、rtt的启动流程二、移植工作总结 前言 RT-Thread学习,这里记录对bsp的移植 一、rtt的启动流程 RT-Thread 支持多种平台和多种编译器,而 rtthread_startup() 函数是 RT-Thread 规定的统一启动入口。一般执行顺序是:系统先从…...
20241102在荣品PRO-RK3566开发板使用荣品预编译的buildroot通过iperf2测试AP6256的WIFI网速
20241102在荣品PRO-RK3566开发板使用荣品预编译的buildroot通过iperf2测试AP6256的WIFI网速 2024/11/2 14:18 客户端:荣耀手机HONOR 70【iPerf2 for Android】 服务器端:荣品PRO-RK3566开发板 预编译固件:update-pro-rk3566-buildroot-hdmi-2…...
网络模型——二层转发原理
网课地址:网络模型_二层转发原理(三)_哔哩哔哩_bilibili 一、路由交换 网络:用来信息通信,信息共享的平台。 网络节点(交换机,路由器,防火墙,AP)介质&#…...
【编程技巧】C++如何使用std::map管理std::function函数指针
一、问题背景 开发过程中遇到了需要根据const字符串调用不同函数的要求。在开发过程中为了快速实现功能,实际使用了if else等判断实现了不同函数的调用,徒增了不少代码行数。 明知道可以采用map管理函数指针,但是没有具体实现过,…...
导航栏小案例
实现类似于这样的效果 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>导航栏</title><style>*{margin: 0;padding: 0;}.div1{width: 100%;height: 60px;/* border: 1px solid blue; */background-color:rgb(…...
MyBatis一文入门精通,面试题(含答案)
一、MyBatis详细介绍 MyBatis 是一个流行的 Java 持久层框架,主要用于简化 SQL 数据库操作。它的设计初衷是通过 XML 或注解的方式配置和执行 SQL 语句,使得数据库操作更加灵活、方便和高效。相比于传统的 JDBC,MyBatis 提供了一些关键优势&…...
Ubuntu18.04服务器非root用户在虚拟环境下的python版本设定
最近需要跑一个python3.9.16版本的代码,Ubuntu18.04服务器上是上次博客中已经定死的python3.8.0版本 需要创建一个虚拟环境,并且在虚拟环境中配置python3.9.16版本 只需要创建一个虚拟环境 conda create -n yyy python3.9.16yyy是你的虚拟环境名字 创建…...
CodeS:构建用于文本到 SQL 的开源语言模型
发布于:2024 年 10 月 29 日 #RAG #Text2 SQL #NL2 SQL 语言模型在将自然语言问题转换为 SQL 查询(文本到 SQL )的任务中显示出良好的性能。然而,大多数最先进的 (SOTA) 方法都依赖于强大但闭源的大型语言…...
HTML 基础概念:什么是 HTML ? HTML 的构成 与 HTML 基本文档结构
文章目录 什么是 HTML ?HTML 的构成 ?什么是 HTML 元素?HTML 元素的组成部分HTML 元素的特点 HTML 基本文档结构如何打开新建的 HTML 文件代码查看 什么是 HTML ? HTML(超文本标记语言,HyperText Markup L…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
Otsu 是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度
文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...
初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)
RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发,后来由Pivotal Software Inc.(现为VMware子公司)接管。RabbitMQ 是一个开源的消息代理和队列服务器,用 Erlang 语言编写。广泛应用于各种分布…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
