当前位置: 首页 > news >正文

A*算法求第k短路

话不多说先上例题。。

acwing:178. 第K短路

给定一张 NN 个点(编号 1,2…N1,2…N),MM 条边的有向图,求从起点 SS 到终点 TT 的第 KK 短路的长度,路径允许重复经过点或边。

注意: 每条最短路中至少要包含一条边。

输入格式

第一行包含两个整数 NN 和 MM。

接下来 MM 行,每行包含三个整数 A,BA,B 和 LL,表示点 AA 与点 BB 之间存在有向边,且边长为 LL。

最后一行包含三个整数 S,TS,T 和 KK,分别表示起点 SS,终点 TT 和第 KK 短路。

输出格式

输出占一行,包含一个整数,表示第 KK 短路的长度,如果第 KK 短路不存在,则输出 −1−1。

数据范围

1≤S,T≤N≤10001≤S,T≤N≤1000,
0≤M≤1040≤M≤104,
1≤K≤10001≤K≤1000,
1≤L≤1001≤L≤100

输入样例:
2 2
1 2 5
2 1 4
1 2 2
输出样例:
14

 思路:

整体思路就是先逆向求一次dijkstral,将各点到目标点的最短路求出来,以此作为A*的估计值。然后在采用A*求第K短路,当第K次目标点出队列是,返回值即可。注意起点终点一直时需要将k+1,将原地不动的情况除去。

上代码:

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> PII;
typedef pair<int,PII> PIII;
#define y second
#define x first
const int N=1010,M=3e4+10;
int s, t ,k;
int n,m;
int h[N],h2[N],e[M],ne[M],w[M],idx;
int dis[N],cnt[N];
bool st[N];
void add(int h[],int a,int b,int c){e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
void dijkstral(){memset(dis,0x3f,sizeof(dis));priority_queue<PII,vector<PII>,greater<PII>>q;dis[t]=0;q.push({0,t});while(q.size()){auto T=q.top();q.pop();int u=T.y;if(st[u]){continue;}st[u]=true;for(int i=h2[u];~i;i=ne[i]){int j=e[i];if(st[j]){continue;}if(dis[j]>dis[u]+w[i]){dis[j]=dis[u]+w[i];q.push({dis[j],j});}}}
}
int astar(){priority_queue<PIII,vector<PIII>,greater<PIII>> q;q.push({dis[s],{0,s}});while(q.size()){auto T=q.top();q.pop();int dist=T.y.x;int u=T.y.y;cnt[u]++;if(cnt[t]==k){return dist;}for(int i=h[u];~i;i=ne[i]){int j=e[i];if(cnt[j]>k){continue;}q.push({dist+w[i]+dis[j],{dist+w[i],j}});}}return -1;
}
int main()
{ios::sync_with_stdio(0);cin.tie(0),cout.tie(0);memset(h,-1,sizeof(h));memset(h2,-1,sizeof(h2));cin>>n>>m;for(int i=1;i<=m;i++){int a,b,c;cin>>a>>b>>c;add(h,a,b,c);add(h2,b,a,c);}cin>>s>>t>>k;dijkstral();if(s==t){k++;}int ans=astar();cout<<ans;
}

 这里附上一道例题,求次短路。。

算是A*的特殊情况了,去直接秒杀吧。

acwing:133. 第二短路

贝茜把家搬到了一个小农场,但她常常回到 FJ 的农场去拜访她的朋友。

贝茜很喜欢路边的风景,不想那么快地结束她的旅途,于是她每次回农场,都会选择第二短的路径,而不像我们所习惯的那样,选择最短路。

贝茜所在的乡村有 RR 条双向道路,每条路都连接了所有的 NN 个农场中的某两个。

贝茜居住在农场 11,她的朋友们居住在农场 NN(即贝茜每次旅行的目的地)。

贝茜选择的第二短的路径中,可以包含任何一条在最短路中出现的道路,并且一条路可以重复走多次。

当然第二短路的长度必须严格大于最短路(可能有多条)的长度,但它的长度必须不大于所有除最短路外的路径的长度。

输入格式

第一行包含两个整数 NN 和 RR。

接下来 RR 行,每行包含三个整数 A,B,DA,B,D,表示农场 AA 和农场 BB 之间存在一条长度为 DD 的路。

输出格式

输出仅包含一个整数,表示从农场 11 到农场 NN 的第二短路的长度。

数据范围

1≤R≤1051≤R≤105,
1≤N≤50001≤N≤5000,
1≤D≤50001≤D≤5000,
1≤A,B≤N1≤A,B≤N

输入样例:
4 4
1 2 100
2 4 200
2 3 250
3 4 100
输出样例:
450
#include<bits/stdc++.h>
using namespace std;
const int N=5010,M=4e5+10;
#define x first
#define y second
typedef pair<int,int>PII;
typedef pair<int,PII>PIII;
int h[N],e[M],ne[M],w[M],idx;
int dis[N];
bool st[N];
int cnt[N];
int n,m;void add(int a,int b,int c){e[idx]=b,w[idx]=c,ne[idx]=h[a],h[a]=idx++;
}
void dijkstral()
{memset(dis,0x3f,sizeof(dis));priority_queue<PII,vector<PII>,greater<PII>>q;q.push({0,n});dis[n]=0;while(q.size()){auto t=q.top();q.pop();int v=t.y;if(st[v]){continue;}st[v]=true;for(int i=h[v];~i;i=ne[i]){int j=e[i];if(st[j]){continue;}if(dis[j]>dis[v]+w[i]){dis[j]=dis[v]+w[i];q.push({dis[j],j});}}}
}
int astar(){int flag=0;priority_queue<PIII,vector<PIII>,greater<PIII>>q;q.push({dis[1],{0,1}});while(q.size()){auto t=q.top();q.pop();int v=t.y.y;int dist=t.y.x;cnt[v]++;if(cnt[n]==1){flag=dist;}if(cnt[n]>=2&&dist>flag){return dist;}for(int i=h[v];~i;i=ne[i]){int j=e[i];if(cnt[j]>2){continue;}q.push({dist+dis[j]+w[i],{dist+w[i],j}});}}
}
int main()
{ios::sync_with_stdio(0);cout.tie(0),cin.tie(0);memset(h,-1,sizeof(h));cin>>n>>m;for(int i=1;i<=m;i++){int a,b,c;cin>>a>>b>>c;add(a,b,c);add(b,a,c);}dijkstral();int ans=astar();cout<<ans;
}

 

相关文章:

A*算法求第k短路

话不多说先上例题。。 acwing&#xff1a;178. 第K短路 给定一张 NN 个点&#xff08;编号 1,2…N1,2…N&#xff09;&#xff0c;MM 条边的有向图&#xff0c;求从起点 SS 到终点 TT 的第 KK 短路的长度&#xff0c;路径允许重复经过点或边。 注意&#xff1a; 每条最短路中至…...

CVPR’25截稿在即:今年的重大新规,你知道吗?

介绍会议&#xff1a; CVPR 2025全称是 IEEE/CVF Conference on Computer Vision and Pattern Recognition&#xff0c;即IEEE/CVF国际计算机视觉与模式识别会议。将于2025年6月11日至15日在美国田纳西州纳什维尔召开&#xff0c;CVPR是计算机视觉和模式识别领域的顶级会议。与…...

一文详解销售管理系统的功能、作用、选型

在当今竞争激烈的商业环境中&#xff0c;企业需要高效的工具来管理销售流程、提升客户关系和优化业务决策。销售管理系统&#xff08;Sales Management System&#xff09;正是这样一种工具&#xff0c;它通过整合客户信息、自动化销售流程和提供数据分析&#xff0c;帮助企业实…...

MySQL上RDS MySQL

初步想法是通过主从复制的方式进行&#xff0c;即ECS上的数据库设为主&#xff0c;RDS为从&#xff0c;等同步完成后&#xff0c;切换为RDS节点。创建实例后发现&#xff0c;RDS实例不支持server-id的自定义配置&#xff0c;这个想法就被否决了。但是aliyun和huaweiyun 都提供了…...

单体架构的 IM 系统设计

先直接抛出业务背景&#xff01; 有一款游戏&#xff0c;日活跃量&#xff08;DAU&#xff09;在两千左右&#xff0c;虽然 DAU 不高&#xff0c;但这两千用户的忠诚度非常高&#xff0c;而且会持续为游戏充值&#xff1b;为了进一步提高用户体验&#xff0c;继续增强用户的忠…...

kafka消费端常见故障及处理方法

文章目录 前言一、消费端某个进程已经crash1. 主要心跳相关配置2. 完整的消费者配置示例3. 调整参数的建议 二、客户端没有crash&#xff0c;但是消费阻塞1. 工作机制2. 示例配置3.运用在代码里3. 配置建议 前言 kafka消费端经常会出现一些故障&#xff0c;一起来分析一下故障…...

【linux 多进程并发】0302 Linux下多进程模型的网络服务器架构设计,实时响应多客户端请求

0302 多进程网络服务器架构 ​专栏内容&#xff1a; postgresql使用入门基础手写数据库toadb并发编程 个人主页&#xff1a;我的主页 管理社区&#xff1a;开源数据库 座右铭&#xff1a;天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物. 一、概…...

LTE及EPC技术原理(笔记)

无线网络发展历史 20世纪80年代&#xff1a;模拟技术和FDMA 20世纪90年代&#xff1a;数字技术和TDMA 21世纪初&#xff1a;数字技术和CDMA LTE进步 下行100Mbps&#xff0c;上行50Mbps 用户面时延10-20ms&#xff0c;控制面时延小于100ms 带宽从1.4MHz~20MHz&#xff0…...

穿越数据迷宫

第一章 在未来的世界里&#xff0c;人类的生活已经被高度数字化。互联网不再是简单的信息交换平台&#xff0c;而是成为了一个庞大的虚拟世界——“数据迷宫”。在这个世界里&#xff0c;每个人都有一个独特的数字身份&#xff0c;他们的生活、工作、娱乐都离不开这个虚拟空间…...

FBX福币交易所国际油价突然大涨!美伊针锋相对

11月4日早上,国际原油大幅高开。WTI原油一度涨超2%。 消息面上,主要产油国宣布延长自愿减产措施至12月底 FBX福币凭借用户友好的界面和对透明度的承诺,迅速在加密货币市场中崭露头角,成为广大用户信赖的平台。 石油输出国组织(欧佩克)发表声明说,8个欧佩克和非欧佩克产油国决…...

Java项目管理与SSM框架介绍

Maven简介 Maven是一个项目管理工具。它可以帮助程序员构建工程&#xff0c;管理jar包&#xff0c;编译代码&#xff0c;完成测试&#xff0c;项目打包等等。Maven工具是基于POM&#xff08;Project Object Model&#xff0c;项目对象模型&#xff09;实现的。在Maven的管理下每…...

WorkFlow源码剖析——Communicator之TCPServer(中)

WorkFlow源码剖析——Communicator之TCPServer&#xff08;中&#xff09; 前言 上节博客已经详细介绍了workflow的poller的实现&#xff0c;这节我们来看看Communicator是如何利用poller的&#xff0c;对连接对象生命周期的管理。&#xff08;PS&#xff1a;与其说Communica…...

在做题中学习(73):删除字符串中所有相邻重复项

解法&#xff1a;用栈来模拟 思路&#xff1a;不用真的定义一个栈,用字符串string来模拟栈的行为 入栈&#xff1a;push_back(s[i]) 出栈:s[i] s.back()的时候&#xff0c;并且s.size() > 0&#xff0c;循环结束得到结果 注意&#xff1a;如果真的用stack<char>来…...

springboot 单元测试-各个模块举例

controller单测 import com.fasterxml.jackson.databind.ObjectMapper; import lombok.SneakyThrows; import org.junit.Before; import org.junit.Test; import org.junit.runner.RunWith; import org.mockito.InjectMocks; import org.mockito.Mock; import org.mockito.Moc…...

MS01SF1 精准测距UWB模组助力露天采矿中的人车定位安全和作业效率提升

在当今矿业行业&#xff0c;随着全球对资源需求的不断增加和开采难度的逐步提升&#xff0c;传统的作业方式面临着越来越多的挑战。露天矿山开采&#xff0c;因其大规模的作业环境和复杂的地形特点&#xff0c;面临着作业人员的安全风险、设备调度的高难度以及资源利用率低下等…...

Android亮屏Job的功耗优化方案

摘要: Job运行时会带来持锁的现象,目前灭屏放电Job的锁托管已经有doze和绿盟标准监管,但是亮屏时仍旧存在过长的持锁现象,故为了优化功耗和不影响用户体验下,新增亮屏放电下如果满足冻结和已运行过一次Job,则进行job限制,当非冻结时恢复的策略 1.现象: (gms_schedu…...

React05 样式控制 classnames工具优化类名控制

样式控制 & classnames工具优化类名控制 样式控制1. 行内样式控制2. 外部样式控制 classnames工具优化类名控制 样式控制 1. 行内样式控制 //定义样式 const style {color: red,fontSize: 30px }function App() {return (<div className"App">{/* 行内样…...

OJ-5G网络建设

示例1 输入&#xff1a; 3 3 1 2 3 0 1 3 1 0 2 3 5 0 输出&#xff1a; 4示例2 输入&#xff1a; 3 1 1 2 5 0 输出&#xff1a; -1 示例3 输入&#xff1a; 3 3 1 2 3 0 1 3 1 0 2 3 5 1 输出&#xff1a; 1 分析&#xff1a;压缩路径 顺序&#xff1a;1 2&#xff1b;…...

Linux简介

1.Linux定义 Linux 是免费使用和自由传播的类 Unix 操作系统&#xff0c;是基于 POSIX 和 UNIX 的多用户、多任务、支持多线程和多 CPU 的操作系统。Linux 能运行主要的 UNIX 工具软件、应用程序和网络协议。它支持 32 位和 64 位硬件。Linux 继承了 Unix 以网络为核心的设计思…...

android——渐变色

1、xml的方式实现渐变色 效果图&#xff1a; xml的代码&#xff1a; <?xml version"1.0" encoding"utf-8"?> <shape xmlns:android"http://schemas.android.com/apk/res/android"xmlns:tools"http://schemas.android.com/tools…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

Python Einops库:深度学习中的张量操作革命

Einops&#xff08;爱因斯坦操作库&#xff09;就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库&#xff0c;用类似自然语言的表达式替代了晦涩的API调用&#xff0c;彻底改变了深度学习工程…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...