当前位置: 首页 > news >正文

回归预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入单输出回归预测

要在MATLAB中实现BO-BiGRU(贝叶斯优化双向门控循环单元)进行多输入单输出回归预测,您需要执行以下步骤:

数据准备:准备您的训练数据和测试数据。
模型构建:构建BO-BiGRU模型,可以使用MATLAB中的深度学习工具箱。
贝叶斯优化:使用MATLAB中的贝叶斯优化工具箱,例如bayesopt函数来调整模型超参数。
训练模型:使用准备好的数据训练您的BO-BiGRU模型。
模型评估:评估模型的性能,可以使用测试数据集进行评估。
预测:使用训练好的模型进行新数据的预测。
以下是一个简单的伪代码示例,展示了如何在MATLAB中实现BO-BiGRU回归预测:
% 1. 数据准备
X_train = 训练数据输入;
Y_train = 训练数据输出;
X_test = 测试数据输入;

% 2. 模型构建
inputSize = size(X_train, 2);
numHiddenUnits = 100;
numResponses = 1;

layers = [ …
sequenceInputLayer(inputSize)
biLSTMLayer(numHiddenUnits, ‘OutputMode’, ‘sequence’)
dropoutLayer(0.2)
fullyConnectedLayer(numResponses)
regressionLayer
];

options = trainingOptions(‘adam’, …
‘MaxEpochs’,50, …
‘MiniBatchSize’, 32, …
‘GradientThreshold’, 1, …
‘SequenceLength’, 20, …
‘Plots’,‘training-progress’);

% 3. 贝叶斯优化
vars = [
optimizableVariable(‘MiniBatchSize’,[32, 128],‘Type’,‘integer’)
optimizableVariable(‘SequenceLength’,[10, 30],‘Type’,‘integer’)
];

ObjFcn = @(params)trainBiGRU(params, X_train, Y_train, layers, options);
results = bayesopt(ObjFcn, vars, ‘MaxObjectiveEvaluations’, 30);

% 4. 训练模型
bestParams = bestPoint(results);
bestMiniBatchSize = bestParams.MiniBatchSize;
bestSequenceLength = bestParams.SequenceLength;

options.MiniBatchSize = bestMiniBatchSize;
options.SequenceLength = bestSequenceLength;

net = trainNetwork(X_train, Y_train, layers, options);

% 5. 模型评估
YPred = predict(net, X_test);

% 6. 预测
disp(YPred);

相关文章:

回归预测 | MATLAB实现BO-BiGRU贝叶斯优化双向门控循环单元多输入单输出回归预测

要在MATLAB中实现BO-BiGRU(贝叶斯优化双向门控循环单元)进行多输入单输出回归预测,您需要执行以下步骤: 数据准备:准备您的训练数据和测试数据。 模型构建:构建BO-BiGRU模型,可以使用MATLAB中的…...

2-ARM Linux驱动开发-设备树平台驱动

一、概述 设备树(Device Tree)是一种描述硬件的数据结构,用于将硬件设备的信息传递给操作系统内核。它的主要作用是使内核能够以一种统一、灵活的方式了解硬件平台的细节,包括设备的拓扑结构、资源分配(如内存地址、中断号等)等信…...

C语言函数与递归

函数 函数是指将一组能完成一个功能或多个功能的语句放在一起的代码结构。在C语言程序中,至少会包含一个函数,主函数main()。本章将详细讲解关于函数的相关内容。 1、库函数 ⭕️C语言库函数是指在C语言标准库中预先定义好的函数,这些函数包…...

Linux下的Debugfs

debugfs 1. 简介 类似sysfs、procfs,debugfs 也是一种内存文件系统。不过不同于sysfs一个kobject对应一个文件,procfs和进程相关的特性,debugfs的灵活度很大,可以根据需求对指定的变量进行导出并提供读写接口。debugfs又是一个Li…...

【FFmpeg】调整音频文件的音量

1、调整音量的命令 1)音量调整为当前音量的十倍 ffmpeg -i inputfile -vol 1000 outputfile 2)音量调整为当前音量的一半 ffmpeg -i input.wav -filter:a "volume=0.5" output.wav3)静音 ffmpeg -i input.wav -filter:a "volume=0" output.wav4)…...

mac 打开访达快捷键

一、使用快捷键组合 1. Command N 在当前桌面或应用程序窗口中,按下“Command N”组合键可以快速打开一个新的访达窗口。这就像在 Windows 系统中通过“Ctrl N”打开新的资源管理器窗口一样。 2. Command Tab 切换 如果访达已经打开,只是被其他应…...

Ubuntu学习笔记 - Day2

文章目录 学习目标:学习内容:学习笔记:Linux系统启动过程内核引导运行init运行级别系统初始化建立终端用户登录系统 Ubuntu关机关机流程相关命令 Linux系统目录结构查看目录目录结构 文件基本属性读写权限命令 下载文件的方法安装wget工具下载…...

c++基础12比较/逻辑运算符

比较/逻辑运算符 布尔比较运算符逻辑运算符位运算符&#xff08;也用于逻辑运算&#xff09;1<a<10怎么表达T140399判断是否为两位数代码 布尔 在C中&#xff0c;布尔类型是一种基本数据类型&#xff0c;用于表示逻辑值&#xff0c;即真&#xff08;true&#xff09;或假…...

mac-ubuntu虚拟机(扩容-共享-vmtools)

一、磁盘扩容 使用GParted工具对Linux磁盘空间进行扩展 https://blog.csdn.net/Time_Waxk/article/details/105675468 经过上面的方式后还不够&#xff0c;需要再进行下面的操作 lvextend 用于扩展逻辑卷的大小&#xff0c;-l 选项允许指定大小。resize2fs 用于调整文件系统的…...

数学建模学习(135):使用Python基于WSM、WPM、WASPAS的多准则决策分析

1. 算法介绍 多标准决策分析(Multi-Criteria Decision Analysis, MCDA)是帮助决策者在复杂环境下做出合理选择的重要工具。WSM(加权和法)、WPM(加权乘积法)、WASPAS(加权和乘积评估法)是 MCDA 中的三种常用算法。它们广泛应用于工程、经济、供应链管理等多个领域,用于…...

VScode的C/C++点击转到定义,不是跳转定义而是跳转声明怎么办?(内附详细做法)

以最简单的以原子的跑马灯为例&#xff1a; 1、点击CtrlShiftP&#xff0c;输入setting&#xff0c;然后回车 2、输入Browse 3、点击下面C_Cpp > Default > Browse:Path里面添加你的工程路径 然后就可以愉快地跳转定义啦~ 希望对你有帮助&#xff0c;如果还不可以的话&a…...

设备管理网关(golang版本)

硬件设备&#xff1a;移远EC200A-CN LTE Cat 4 无线通信模块 操作系统&#xff1a;openwrt 技术选型&#xff1a;layui golang sqlite websocket 工程结构 界面展示 区域管理 设备管理 运行监控 系统参数 资源文件 版本信息...

Armv8的安全启动

目录 1. Trust Firmware 2. TF-A启动流程 3. TF-M启动流程 3.1 BL1 3.2 BL2 4.小结 在之前汽车信息安全 -- 再谈车规MCU的安全启动文章里&#xff0c;我们详细描述了TC3xx 、RH850、NXPS32K3的安全启动流程&#xff0c;而在车控类ECU中&#xff0c;我们也基本按照这个流程…...

冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现

常见排序算法实现 冒泡排序、选择排序、计数排序、插入排序、快速排序、堆排序、归并排序JAVA实现 文章目录 常见排序算法实现冒泡排序选择排序计数排序插入排序快速排序堆排序归并排序 冒泡排序 冒泡排序算法&#xff0c;对给定的整数数组进行升序排序。冒泡排序是一种简单…...

SQL CASE表达式与窗口函数

CASE 表达式是一种通用的条件表达式&#xff0c;类似于其他编程语言中的if/else语句。 窗口函数类似于group by&#xff0c;但是不会改变记录行数&#xff0c;能扫描所有行&#xff0c;能对每一行执行聚合计算或其他复杂计算&#xff0c;并把结果填到每一行中。 1 CASE 表达式…...

基于SpringBoot的植物园管理小程序【附源码】

基于SpringBoot的植物园管理小程序 效果如下&#xff1a; 系统登录页面 管理员主页面 商品订单管理页面 植物园信息管理页面 小程序主页面 小程序登录页面 植物信息查询推荐页面 研究背景 随着互联网技术的快速发展和移动设备的普及&#xff0c;线上管理已经成为各行各业提高…...

asp.net网站项目如何设置定时器,定时获取数据

在 Global.asax.cs 文件中编写代码来初始化和启动定时器。Global.asax.cs 文件定义了应用程序全局事件&#xff0c;比如应用程序的启动和结束。在这里&#xff0c;我们将在应用程序启动时初始化和启动定时器。 using System; using System.Timers;public class Global : Syste…...

单元/集成测试解决方案

在项目开发的前期针对软件单元/模块功能开展单元/集成测试&#xff0c;可以尽早地发现软件Bug&#xff0c;避免将Bug带入系统测试阶段&#xff0c;有效地降低HIL测试的测试周期&#xff0c;也能有效降低开发成本。单元/集成测试旨在证明被测软件实现其单元/架构设计规范、证明被…...

高效作业跟踪:SpringBoot作业管理系统

1 绪论 1.1 研究背景 现在大家正处于互联网加的时代&#xff0c;这个时代它就是一个信息内容无比丰富&#xff0c;信息处理与管理变得越加高效的网络化的时代&#xff0c;这个时代让大家的生活不仅变得更加地便利化&#xff0c;也让时间变得更加地宝贵化&#xff0c;因为每天的…...

keepalived + nginx 实现网站高可用性(HA)

keepalive 一、keepalive简介二、实现步骤1. 环境准备2. 安装 Keepalived3. 配置 Keepalived 双机主备集群架构4. 配置 Nginx5. 启动Keepalived6. 测试高可用性7. 配置keepalived 双主热备集群架构 三、虚拟ip 一、keepalive简介 目前互联网主流的实现WEB网站及数据库服务高可用…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI&#xff08;https://spring.io/projects/spring-ai&#xff09;作为Spring生态中的AI集成框架&#xff0c;其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似&#xff0c;但特别为多语…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...