当前位置: 首页 > news >正文

分类算法——逻辑回归 详解

        逻辑回归(Logistic Regression)是一种广泛使用的分类算法,特别适用于二分类问题。尽管名字中有“回归”二字,逻辑回归实际上是一种分类方法。下面将从底层原理、数学模型、优化方法以及源代码层面详细解析逻辑回归。

1. 基本原理

1.1 数学模型

        逻辑回归的核心思想是将线性回归的输出通过一个逻辑函数(sigmoid函数)转化为概率值。给定输入特征向量 x=\left [ x_{1},x_{2}, ... ,x_{n} \right ] ,逻辑回归模型可以表示为:

z=\beta _{0} + \beta _{1}*x_{1} + \beta _{2}*x_{2} + ... + \beta _{n}*x_{n} = + \beta^{T}*x

这里,\beta _{0}​ 是截距项,\beta _{1} , \beta _{2} ,... ,\beta _{n}​ 是特征对应的权重。

然后通过 sigmoid 函数将 z 转化为概率:

h(x)= \sigma \left ( z \right ) = \frac{1}{1+e^{-z}} = \frac{1}{1+e^{-\beta ^{\tau }x}}

其中, h(x) 表示给定输入特征 x 预测为正类的概率。

整体的流程

结果类似于:

1.2 目标函数

逻辑回归的目标是最大化似然函数(Likelihood Function),其形式为:

这里,y^{(i)} 是第 i 个样本的标签,m 是样本数量。通过取对数得到对数似然函数:

2. 优化方法

        为了找到最佳的参数 β,通常使用梯度下降牛顿法等优化算法来最小化负的对数似然函数。

2.1 梯度下降法

更新参数的公式为:

梯度下降例子图示:

这里,\alpha 是学习率,​\frac{\partial l}{\partial\beta _{j}}  是对数似然函数的梯度,可以通过链式法则计算:

2.2 牛顿法

牛顿法利用二阶导数信息(Hessian矩阵)来更快收敛:

\beta:=\beta - H^{-1}g  

其中,g 是梯度,H 是 Hessian 矩阵。牛顿法的优势在于收敛速度快,但计算复杂度较高。

                         绿色为梯度下降,红色为牛顿法,牛顿法的路径更加直接        

3. 源代码层面

下面是使用 Python 的 scikit-learn 库实现逻辑回归的示例代码:

import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score# 加载数据
data = load_iris()
X = data.data
y = (data.target == 0).astype(int)  # 将目标转换为二分类# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 创建逻辑回归模型
model = LogisticRegression(solver='liblinear')# 拟合模型
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

4. 逻辑回归的优缺点

优点
  • 简单易理解:模型结构简单,便于解释和实现。
  • 计算效率高:相比复杂模型,逻辑回归的计算开销较小。
  • 适用性广:可以处理线性可分的二分类问题,且经过适当变换后可应用于多分类问题。
缺点
  • 线性假设:假设特征与输出之间是线性关系,对复杂非线性关系表现不佳。
  • 对异常值敏感:逻辑回归对异常值比较敏感,可能会影响模型性能。
  • 特征独立性假设:逻辑回归假设特征之间是独立的,特征间的相关性可能会影响预测准确性。

总结

        逻辑回归是一种强大而有效的分类算法,能够通过概率的方式对输入数据进行建模。其底层原理基于线性模型和逻辑函数的组合,优化过程使用梯度下降等方法来调整模型参数。尽管有其局限性,但在许多实际应用中依然表现优越,尤其在特征数量较少且具有线性可分性的情况下。

相关文章:

分类算法——逻辑回归 详解

逻辑回归(Logistic Regression)是一种广泛使用的分类算法,特别适用于二分类问题。尽管名字中有“回归”二字,逻辑回归实际上是一种分类方法。下面将从底层原理、数学模型、优化方法以及源代码层面详细解析逻辑回归。 1. 基本原理 …...

只允许指定ip远程连接ssh

我们都会使用securtcrt或者xshell等软件进行远程登录,这样虽然会给我们带来很多便捷,但是同样会存在一定的风险。有很多人专门通过重复的扫描试图破解我们的linux服务器,从而获取免费的“肉鸡”。因此我们可以通过设置hosts.allow和hosts.den…...

Rust 力扣 - 2841. 几乎唯一子数组的最大和

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 我们遍历长度为k的窗口,用一个哈希表记录窗口内的所有元素(用来对窗口内元素去重),我们取哈希表中元素数量大于等于m的窗口总和的最大值 题解代码 use std::coll…...

TwinCL: A Twin Graph Contrastive Learning Model for Collaborative Filtering

TwinCL: A Twin Graph Contrastive Learning Model for Collaborative Filtering 摘要 在推荐和协同过滤领域,图对比学习(Graph Contrasive Learning,GCL)已经成为一种有影响的方法。然而,对比学习有效性的原因还没有…...

如何区分实例化网格中的每个实例

1)如何区分实例化网格中的每个实例 2)项目在模拟器上切换程序后有概率画面冻结 3)Unity工程导入团结引擎,GUID会变化,导致引用关系丢失 4)Mask在Android平台下渲染异常 这是第407篇UWA技术知识分享的推送&a…...

理解 WordPress | 第一篇:与内容管理系统的关系

初步了解 WordPress 在互联网世界里,WordPress 是一个家喻户晓的名字。它是一个开源的内容管理系统(Content Management System,简称 CMS),帮助用户轻松创建和管理网站。WordPress 诞生于 2003 年,最初是一…...

Python游戏脚本之实现飞机大战(附源码)

一.游戏设定 游戏界面如下图所示: 游戏的基本设定: 敌方共有大中小3款飞机,分为高中低三种速度; 子弹的射程并非全屏,而大概是屏幕长度的80%; 消灭小飞机需要1发子弹,中飞机需要8发,大飞机需要20发子弹; 每消灭一架小飞机得1000分,中飞机6000分,大飞…...

使用Spring Boot搭建简单的web服务

1 引言 1.1 Spring Boot简介 Spring Boot是由Pivotal团队提供的一套开源框架,旨在简化Spring应用的创建及部署。 一、核心设计思想 Spring Boot的核心设计思想是“约定优于配置”(Convention Over Configuration,简称COC)。这…...

【IF-MMIN】利用模态不变性特征进行缺失模态的鲁棒多模态情感识别

代码地址:github地址传送 文章是基于MMIN的改进 -> MMIN传送 abstract 多模态情感识别利用跨模态的互补信息来获得性能。然而,我们不能保证所有模式的数据总是存在于实践中。在跨模态数据缺失预测研究中,异质性模态之间的固有差异即模态…...

RGB图像,排列方式NHWC适合CPU计算,NCHW适合GPU计算

之前写过笔记OpenCV读取图像时按照BGR的顺序HWC排列,PyTorch按照RGB的顺序CHW排列,HWC格式排列,那么内存位置计算公式是? 在比较NHWC(channels_last)和NCHW(channels_first)这两种图像数据通道格式的效率时…...

布朗运动

内容来源 数理金融初步(原书第3版)Sheldon M. Ross著 冉启康译 机械工业出版社 布朗运动 定义 如果随机变量集合 X ( t ) X(t) X(t) 满足以下条件 X ( 0 ) X(0) X(0) 是一个给定的常数 对所有正数 y y y 和 t t t,随机变量 X ( y t …...

WPF+MVVM案例实战(二十二)- 制作一个侧边弹窗栏(CD类)

文章目录 1、案例效果1、侧边栏分类2、CD类侧边弹窗实现1、样式代码实现2、功能代码实现3 运行效果4、源代码获取1、案例效果 1、侧边栏分类 A类 :左侧弹出侧边栏B类 :右侧弹出侧边栏C类 :顶部弹出侧边栏D类 :底部弹出侧边栏2、CD类侧边弹窗实现 1、样式代码实现 在原有的…...

集成旺店通旗舰版售后单至MySQL数据库

旺店通旗舰版-售后单集成到MySQL的技术实现 在数据驱动的业务环境中,如何高效、准确地将旺店通旗舰奇门的数据集成到MySQL数据库,是许多企业面临的重要挑战。本文将分享一个具体的系统对接案例:旺店通旗舰版-售后单-->BI泰海-售后订单表(…...

【Linux】从零开始使用多路转接IO --- epoll

当你偶尔发现语言变得无力时, 不妨安静下来, 让沉默替你发声。 --- 里则林 --- 从零开始认识多路转接 1 epoll的作用和定位2 epoll 的接口3 epoll工作原理4 实现epollserverV1 1 epoll的作用和定位 之前提过的多路转接方案select和poll 都有致命缺点…...

爬虫学习4

from threading import Thread#创建任务 def func(name):for i in range(100):print(name,i)if __name__ __main__:#创建线程t1 Thread(targetfunc,args("1"))t2 Thread(targetfunc, args("2"))t1.start()t2.start()print("我是诛仙剑")from …...

CTF之web题集详情随手笔记

《Web安全》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484238&idx1&snca66551c31e37b8d726f151265fc9211&chksmc0e47a12f793f3049fefde6e9ebe9ec4e2c7626b8594511bd314783719c216bd9929962a71e6&scene21#wechat_redirect 1 WEB 1 靶场目…...

TDengine 集群能力:超越 InfluxDB 的水平扩展与开源优势

随着物联网、车联网等领域的快速发展,企业所面临的数据采集量呈爆炸式增长,这对 IT 基础设施和数据库提出了严峻挑战。传统单机版数据库逐渐无法应对高并发的数据写入和复杂的查询需求。因此,底层数据库必须具备水平扩展能力,以确…...

MATCH_DIRECT_BOOT_AWARE和MATCH_DIRECT_BOOT_UNAWARE

PackageManager.MATCH_DIRECT_BOOT_AWARE和PackageManager.MATCH_DIRECT_BOOT_UNAWARE 在Android系统中,PackageManager类提供了一些标志位,用于控制查询系统中的应用和组件时的行为。其中,MATCH_DIRECT_BOOT_AWARE和MATCH_DIRECT_BOOT_UNAWA…...

LabVIEW离心泵性能优化测试系统

开发了一套基于LabVIEW平台开发的离心泵性能优化测试系统。系统集成了数据采集、流量控制、数据存储、报表生成等功能,提供了低成本、便捷操作的解决方案,适用于工业场景中对离心泵性能的精确测评。 项目背景 随着工业化进程的加速,离心泵在…...

token和jwt区别

Token 和 JSON Web Token (JWT) 都是用于身份验证和授权的技术,但它们之间有一些重要的区别。下面是它们的主要区别和各自的特性: 1. 概念上的区别 Token: 广义概念:Token 是一个通用术语,指的是任何形式的令牌,用于在客户端和服务器之间传递身份验证和授权信息。实现方…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

使用Spring AI和MCP协议构建图片搜索服务

目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

比较数据迁移后MySQL数据库和OceanBase数据仓库中的表

设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...

Bean 作用域有哪些?如何答出技术深度?

导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答&#xff0c…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...